Name Description Size Visibility
602 Bytes Public
131 Bytes Public
98 Bytes Public
471 Bytes Public
2.62 KB Public
Taux acroisement= Ta(h)=f(a+h)-f(a)/h f’(a)=limT(h) = nombre dérivé en a h->0 equation de la tangente du point abscisse a = y=f’(a)(x-a)+f(a) graphiquement= f’(a) est le coef directeur de la tangente a Cf au point abscisse a coef dirrecteur = deplacement y/ deplacement x droite = y=mx +p A(Xa;Ya)E droite <=> Ya=mXa+P derivées des fonctions usuelles: +x = 0 x=A x2=2x xN=nxN-1 1/x=-A/x2 racine de x= 1/2racine de x operation sur les derivées (u+v)’=u’+v’ (ku)’=ku’ (u*v)’=u’v+uv’ (u/v)’= u’v-uv’/v2
525 Bytes Public
DS contrôle ondes mécaniques
931 Bytes Public
orga
182 Bytes Public
948 Bytes Public
655 Bytes Public
1.17 KB Public
940 Bytes Public
lij,io
363 Bytes Public
541 Bytes Public

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.