maths.py

Created by stella-maestre

Created on January 04, 2021

525 Bytes

Taux acroisement= Ta(h)=f(a+h)-f(a)/h f’(a)=limT(h) = nombre dérivé en a h->0 equation de la tangente du point abscisse a = y=f’(a)(x-a)+f(a) graphiquement= f’(a) est le coef directeur de la tangente a Cf au point abscisse a coef dirrecteur = deplacement y/ deplacement x droite = y=mx +p A(Xa;Ya)E droite <=> Ya=mXa+P derivées des fonctions usuelles: +x = 0 x=A x2=2x xN=nxN-1 1/x=-A/x2 racine de x= 1/2racine de x operation sur les derivées (u+v)’=u’+v’ (ku)’=ku’ (u*v)’=u’v+uv’ (u/v)’= u’v-uv’/v2


Taux acroisement= Ta(h)=f(a+h)-f(a)/h
f'(a)=limT(h)   = nombre dérivé en a
        h->0
equation de la tangente du point abscisse a = y=f'(a)(x-a)+f(a)
graphiquement= f'(a) est le coef directeur de la tangente a Cf au point abs a
coef dirrecteur = deplacement y/ deplacement x
droite =  y=mx +p
A(Xa;Ya)E droite <=> Ya=mXa+P
derivées des fonctions usuelles: 
+x = 0
x=A
x2=2x
xN=n*xN-1
1/x=-A/x2
racine de x= 1/2racine de x
operation sur les derivées
(u+v)'=u'+v'
(ku)'=k*u'
(u*v)'=u'v+uv'
(u/v)'= u'v-uv'/v2

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.