exponentielles.py

Created by stella-maestre

Created on May 26, 2021

471 Bytes


La fonction exponentielle est dérivable et :
(exp(x)) = exp(x)

Pour tous x et y réels :
® exp(a + b) = exp(a)x exp(b)
® exp(a) = 1/exp(a)
® exp(a  b) = exp(a)/exp(b)
® (exp(a))^n = exp(na), n  Z.

Pour tout nombre réel x, on note exp(x) =e^x

Les propriétés algébriques sont alors analogues aux règles de calculs sur les puissan
® e^a+b =e^a x e^b 
® e^ab = e^a/e^b
® e^a = 1/e^a
® (e^a)^n =e^na, nZ

® e^a =e^b a=b 
® e^a >e^b a>b.

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.