eco_2.py

Created by vovenastream

Created on September 30, 2025

1.31 KB


Objectif
# - Manipuler R(x), C(x), P(x)=R-C; points morts; marginales; optimum.
#
# Ce qu'on te demande
# - Ecrire R(x) a partir de p(x).
# - Resoudre R(x)=C(x).
# - Calculer C'(x), R'(x), P'(x) et interpreter.
# - Trouver x* qui maximise P (souvent R'=C').
#
# Formules
# - R(x) = p(x) * x
# - P(x) = R(x) - C(x)
# - Marginales : C'(x), R'(x), P'(x) = R'(x) - C'(x)
# - Point mort : R(x) = C(x)
# - Optimum : R'(x*) = C'(x*) et (si demande) P''(x*) < 0 (test 2e derivee)
#
# Methode (optimiser P)
# 1) P(x) = R(x) - C(x)
# 2) P'(x) = R'(x) - C'(x). Resoudre P'(x)=0 pour candidats.
# 3) Verifier maximum (P''<0) ou comparer valeurs autour / bornes.
# 4) Conclure : x* optimal, calculer P(x*), R(x*), C(x*).
#
# Exemple
# Prix lineaire : p(x) = 50 - 0.5x
# Cout : C(x) = 100 + 10x
# R(x) = p(x)*x = 50x - 0.5x^2
# P(x) = R - C = (50x - 0.5x^2) - (100 + 10x) = -0.5x^2 + 40x - 100
#
# Points morts : R=C -> -0.5x^2 + 40x - 100 = 0
#   Discriminant: 40^2 - 4*(-0.5)*(-100) = 1600 - 200 = 1400
#   x = [40 +/- sqrt(1400)] / (2*0.5) = 40 +/- sqrt(1400)
#   sqrt(1400) ~ 37.416 -> x ~ 2.584 et x ~ 77.416 (si contexte autorise).
#
# Optimum (MR=MC) : R'(x) = 50 - x ; C'(x) = 10
#   50 - x = 10 -> x* = 40
#   R(40) = 50*40 - 0.5*1600 = 2000 - 800 = 1200
#   C(40) = 100 + 10*40 = 500
#   P(40) = 1200 - 500 = 700  (profit maximal ici)

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.