""" log5[10x/3x-1] = 1 Remove log 5^1 = 10x/3x-1 solo the x 15x-5 = 10 15x = 15 x=1 YOU MUST CHECK PUT X AS 1 SOLVE 3-log2(x+1)=log2(x-1) add log2(x-1) 3 = log2(x-1) + log2(x+1) 3 = log2[(x-1)(x+1)] 3 = log2(x^2-1) remove log 2^3 = x^2 -1 8 = x^2 -1 add 9=x^2 root x= plus or minus 3 CHECK WORK 3 works - 3 does not log4(x-1) + log4(5) = log4(x+6) combine log4[5 * (x-1)] = log4(x+6) log4=(5x-5) = log4(x+6) remove log 5x - 5 = x + 6 -x 4x - 5 = 6 +5 4x = 11 x = 4/11 CHECK WORKS log2(x+3) - log2(x-1) + log2(2x+6) - log2(3) simplify log2(x+3/x-1) = log 2(2x+6/3) remove log (x+3/x-1) = (2x+6/3) * 3 *(x-1)(2x+6) 3x+9 = 2x^2 + 4x -6 -3x - 9 0 = 2x^2 + x - 15 simpflifiy 0 = (2x -5)(x+3) x = 5/2 x = -3 CHECK only 5/2 works ln(4x) + ln(5) = 5 ln(4x * 5) = 5 ln(20x) = 5 e^5 = 20x e^5/20 = x x = 7.421 CHECK WORKS """