suite_et_nombres_complexes.py

Created by teivaetienne

Created on January 28, 2025

1.09 KB


=== NOMBRES COMPLEXES ===

Forme algebrique : z = x + iy
Module : |z| = sqrt(x2 + y2)
Conjugué : z̄ = x - iy
Inverse : 1/z = (x - iy)/(x2 + y2)

Forme polaire : z = r(cosθ + isinθ) = re^()
Formule d'Euler :
 e^(iθ) = cosθ + isinθ
 cosθ = (e^(iθ) + e^(-iθ))/2
 sinθ = (e^(iθ) - e^(-iθ))/(2i)

Opérations :
Multiplication : 
 z*z' = rr'[cos(θ+θ') + isin(θ+θ')]
Division :
 z/z' = (r/r')[cos(θ-θ') + isin(θ-θ')]

Équation du 2nd degré : az2 + bz + c = 0
Δ = b2 - 4ac
Si Δ > 0 : 2 racines réelles
Si Δ = 0 : 1 racine double
Si Δ < 0 : 2 racines complexes conjuguées

=== SUITES NUMÉRIQUES ===

Suite arithmétique :
Terme général : u_n = u0 + nr
Somme : S = (n+1)*(u0 + u_n)/2
Différence constante : u_{n+1} - u_n = r
Suite géométrique :
Terme général : v_n = v0*q^n
Somme (q ≠ 1) : S = v0*(1 - q^(n+1))/(1 - q)
Quotient constant : v_{n+1}/v_n = q
 Comportement de q^n :
q > 1 → ∞ | q = 1 → 1 | -1 < q < 1 → 0 | q ≤ -1 → diverge

=== ASTUCES ===
Pour montrer qu'une suite n'est pas :
- Arithmétique : u1 - u0 ≠ u2 - u1
- Géométrique : v1/v0 ≠ v2/v1 (si termes ≠ 0)

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.