derivation.py

Created by tara-cornu

Created on May 17, 2021

878 Bytes


k (constante) --> 0
x --> 1
x**2 --> 2x
x**3 --> 3x**2
1/x --> -1/x**2
rac(x) --> 1/2rac(x)
x**n --> nx**n-1


Somme (u+v) --> u'+v'
Multiplication (ku) --> ku'
Produit (uv) --> u'v+uv'
Inverse (1/v) --> -v'/v**2
Quotient (u/v) --> u'v-uv'/v**2

((u(x))**n)' --> n * u'(x) * (u(x))**n-1

(rac(u(x)))' --> u'(x) * 1/2rac(u(x))


delta = b**2 - 4ac

si delta > 0 :
  x1 = -b-rac(delta) / 2a
  x2 = -b+rac(delta) / 2a

si delta = 0 :
  x0 = -b / 2a

si delta < 0 : 
  pas de solution réelle

(x-alpha)**2 + B
alpha = -b/2a
B = f(alpha)


maximum sur I atteint en c 
  si f(x) <= f(c)

minimum sur I atteint en d
  si f(x) >= f(d)

extremum local sur un 
intervalle J inclus dans I

si réel a pas une borne de l'intervalle
et extremum local en a  
  alors f'(a) = 0

si a pas une borne de I 
et si f' s'annule en changeant de signe
  alors extremum local en a 

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.