script52.py

Created by tabernac37

Created on January 18, 2022

1.3 KB


#Fonction Logarithme Décimal

Particularité

log1 = 0
log10 = 1
log1/10 = -1
log10^x = x
10^logx = x 

Propriétés de la fonction logarithme décimale :

log( a * b ) = loga + logb
loga^n = nloga
loga/b = loga- logb
log1/b = -logb

loga = b
e^loga = e^b
a = e^b

#Fonction Logarithme Népérien

Pour x > 0 :
y = lnx <=> e^y = x
ln1 = 0
lne = 1
ln1/e = -1
lne^x = x
e^lnx = x

ln( a * b ) = lna + lnb
lna^n = nlna
lna/b = lna - lnb
ln1/b = -lnb
ln'racine de a' = 1/2 * lna
(lnx)' = 1/x

a^m * a^n = a^m+n
a^m / a^n = a^m-n
(a^m)^n = a^m*n
a^-n = 1 / a^n
e^a = e^b   <=>   a = b
e^a > e^b   <=>   a > b

f(x)= a ->f'(x)= 0
f(x)= ax ->f'(x)= a
f(x)= x^n ->f'(x)=nx^n-1
f(x)= 1/x ->f'(x)= - 1/x^2
f(x)= cos(x) ->f'(x)=-sin(x)
f(x)= sin(x) ->f'(x)=cos(x)
f(x)= (u + v)' ->f'(x)= u' + v'
f(x)= (coef*u)' ->f'(x)= ku'
f(x)= (uv)' ->f'(x)= u'v + uv'
f(x)= (1/u)' ->f'(x)= - u'/u^2
f(x)= (u/v)'->f'(x)= (u'v - uv')/v**2
f(x)= Acos(ax+phi) ->f'(x)= -Aasin(ax+phi)
f(x)= Asin(ax+phi) ->f'(x)= Aacos(ax+phi)
f(x)= f(ax + b) ->f'(x)= a*f'(ax + b)

  II.

  Tangente en a :
  
  y = f'(a)*(x-a) + f(a)
  
  Calcule de f(x)' et de f(x)
  puis tu remplace les x par a.
  :
         
f(x)= u^n ->f'(x)= nu'u^n-1
f(x)= e^u ->f'(x)= u'e^u
f(x)= ln(u) ->f'(x)= u'/u
f(x)= cos(u) ->f'(x)= -u'sin(u)
f(x)= sin(u) ->f'(x)= u'cos(u)

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.