points3d.py

Created by schraf

Created on April 08, 2023

1.32 KB

Vidéo et explications en cours de réalisation


import turtle
from math import cos,sin,exp,pi,atan
from kandinsky import fill_rect

t = turtle
t.speed(0)
t.hideturtle()
t.pensize(1)
t.color(255,255,0)

fill_rect(0,0,320,222,(0,0,0))

def cosin(theta):
    a = theta * pi / 180
    return cos(a), sin(a)
    
def pitchx(p):
    c,s = cosin(p)
    return [[1,0,0,0],[0,c,-s,0],[0,s,c,0],[0,0,0,1]]

def headingy(h):
    c,s = cosin(h)
    return [[c,0,-s,0],[0,1,0,0],[s,0,c,0],[0,0,0,1]]

def rollz(r):
    c,s = cosin(r)
    return [[c,-s,0,0],[s,c,0,0],[0,0,1,0],[0,0,0,1]]

def trans(x,y,z):
    return [[1,0,0,-x],[0,1,0,-y],[0,0,1,-z],[0,0,0,1]]

def mult(m1,m2):
 return [[sum(a*b for a,b in zip(ligne,col)) for col in zip(*m2)] for ligne in m1]  

def ViewM(x,y,z,p,h,r):
    return mult(rollz(r),mult(headingy(h),mult(pitchx(p),trans(x,y,z))))

def ModelM(x,y,z,p,h,r):
    return mult(trans(-x,-y,-z),mult(pitchx(p),mult(headingy(-h),rollz(r))))

camera = ViewM(0,0,0,130,0,0)
modele = ModelM(0,0,0,180,0,0)
matrix = mult(camera,modele)

for r in range(1,50):
    d = 20 * exp(r/10)
    p = 180
    for k in range(p):
        x,y,z,w = d * cos(k * 2 * pi / p), d * sin(k * 2 * pi /p), \
        -200+10*r,  1
        v = mult(matrix,[[x],[y],[z],[1]])
        t.penup()
        t.goto(v[0][0],v[1][0])
        t.pendown()
        t.goto(v[0][0],v[1][0])

t.hideturtle()

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our <a href="https://www.numworks.com/legal/cookies-policy/">cookies policy</a>.