dodecaedre.py

Created by schraf

Created on September 29, 2023

2.5 KB

Voir la construction des 5 solides de Platon


from math import *
from turtle import *

c1, c2 = "grey", "black"

def dist(a, b):
    return sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)

def angle(a, b):
    return degrees(atan2(b[1] - a[1], b[0] - a[0]))

def point(a):
    penup()
    goto(a)
    pendown()
    pensize(4)
    goto(position())
    pensize(1)

def segment(a, b, coul, dash=True, s=1):
    pencolor(coul)
    r = dist(a, b)
    penup()
    point(a)
    if not (dash):
        pensize(s)
    setheading(angle(a, b))
    for i in range(r):
        penup() if i % 5 and dash else pendown()
        fd(1)
    point(b)

def avance(a, b, d):
    penup()
    goto(a)
    setheading(angle(a, b))
    fd(d)
    pendown()
    pensize(4)
    goto(position())

def cercle(a, b, r, coul):
    color(coul)
    avance(a, b, r)
    b = position()
    segment(a, b, coul)
    p = position()
    point(p)
    setheading(heading() + 90)
    circle(int(r))

def mul(p, i): return (i * p[0], i * p[1])

def rot(p, i, n=3):
    return [
        p[0] * cos(pi / n * i) - p[1] * sin(i * pi / n),
        p[0] * sin(pi / n * i) + p[1] * cos(i * pi / n),
    ]

def rangee(p):
    segment(mul(p, 10), mul(p, -10), c1)
    for i in range(1, 5):
        coul = (230,) * 3 if i % 2 else c1
        for s in (1, -1):
            cercle(mul(p, s * i), mul(p, s * (i + 1)), 25, coul)

def fond():
    global pt, ec
    reset()
    speed(6)
    pencolor(c1)
    segment((0, -150), (0, 150), c1)
    for i in range(5):
        coul = (230,) * 3 if i % 2 else c1
        cercle((0, -25 * i), (0, -25 - 25 * i), 25, coul)
        if i > 0:
            cercle((0, 25 * i), (0, 25 + 25 * i), 25, coul)
    p = [25 * cos(pi / 6), 25 * sin(pi / 6)]
    rangee(p)
    p[0] *= -1
    rangee(p)
    p[0] *= -1
    cs = 100 * cos(pi / 6)
    for s in (-1, 1):
        segment((0, s * 100), (-cs, -s * 50), c1, False)
        segment((-cs, -s * 50), (cs, -s * 50), c1, False)
        segment((cs, -s * 50), (0, s * 100), c1, False)
    for i in range(6):
        segment(rot(mul(p, 4), i), rot(mul(p, 2), i + 2), c1, False)
        segment(rot(mul(p, 4), i), rot(mul(p, 2), i - 2), c1, False)

pts = (-35, -39), (-18, -49), (18, -49)
fond()
pencolor(c2)
pensize(2)

for i in range(6):
    penup()
    for j in range(2):
        goto(rot(pts[j], i))
        pendown()
        goto(rot(pts[j + 1], i))

pts = (0, 0), (0, -32), (-34, -39), (0, -32), (34, -39)

for i in range(3):
    penup()
    for j in range(4):
        goto(rot(pts[j], i, 1.5))
        pendown()
        goto(rot(pts[j + 1], i, 1.5))

hideturtle()

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.