meca.py

Created by romain-cariou029

Created on January 29, 2022

775 Bytes


# Type your text here
v(i)=(M(i-1) a M(i+1))/(t(i+1)-t(i-1)
delta v(i)=v(i+1)-v(i-1)
a(i)=(delta v(i))/t(i+1)-t(i+1)
traçage:-v(i) parallèle a [M(i-1)M(i+1)]
-delta v(i) est construit par chasles 
-a(i) colinéaires donc parallèle a v(i)
Fext=m(kg)*a(m.s**-2) dans un referentiel galileen 
redaction:-systeme: ballon par ex.
          -referentiel:galiléen 
          -donc on utilise la 2ème loi de newton
a(0;
  -g)
avec:a=vecteur accélération
v(cte1;
  -g*t+cte2)
avec:v=vecteur vitesse
     cte1=v0*cos(alpha)
     cte2=v0*sin(alpha)
OM(v0*cos(alpha)*t+cte3;
   -(1/2)*g*t**2+v0*sin(alpha)*t+cte4)
avec:OM=position du centre de masse du système
     cte3=x0
     cte4=y0
on a donc t=(x/vO*cos(alpha)) 
et y=-(1/2)*g*(x/v0*cos(alpha))**2+tan(alpha)*x

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.