p7.py

Created by ramadiallo01

Created on March 22, 2022

532 Bytes


propriété combinaison 

Soit n un entier naturel alors 
somme (Z) entre k=0 et n (n k)=n

PREUVE 
Par définition, VkeN, 0<k<n, (nk) est le nbr de combinaison de k elements de E

cad (nk) est le nbr de parties de E composé de k elements
 
Une partie de E peut posserder 0;1;...;n 
d'élements pour keN, avec k<n,
le nbr de parties de k éléments
(nk)
le nbr total de parties de E 
est donc

card(P(E))
=(n0)+(n1)+(n2)+...+(nn)
= somme (Z) entre k=0 et n (nk)

Or card (P(E))=2^n
donc somme (Z) entre k=0 et n (nk)
=2^n

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.