demo6.py

Created by ramadiallo01

Created on January 11, 2022

443 Bytes


from maths import*

La fonction ln est dérivable sur ]0; +[ et pour tout réel x > 0 : ln0
(x) = 1/x
 
 
On admet que x->ln x est déribale sur R+*

On démontre que lnx'=1/x
R+*-->R
Soit x --> e^(lnx) (=x)
 f(x)=lnx est dérivable sur R+*
 x-> e^x  est derivable sur R
 par composition de fc f(x)=e^(lnx) 
 est dérivable sur R+*
 
 Vxqui appartient à R+*, 
 f'(x)=1
 f'(x)=(lnx)'e^(lnx)
 = lnx'*x
alors lnx'x=1
alors lnx'=1/x

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.