demo4.py

Created by ramadiallo01

Created on December 10, 2021

681 Bytes


Propriété 2. Dans lespace muni 
dun repère orthonormé 
(O;i,j,k)
 on considère le vecteur −→n (a;b;c)
 et un point A(xA; yA; zA). 
 Le plan P qui passe par le point
A et de vecteur normal −→n a pour
équation cartésienne 
: ax + by + cz + d = 0 avec d =
(axA + byA + czA)

 Réciproquement, a,b,c,d étant 4
nombres réels données avec a,b,c
non tous nuls ; lensemble
des points M(x; y; z) tels que 
ax + by + cz = 0 est un plan de
vecteur normal −→n (a;b;c)


Demonstration 4
Soit A(Xa,Ya,Za) et−→n (a;b;c)
n est orthogonal à P
M(x;y;z)P SSI AM*n=0 
SSI a(Xm-Xa)+b(Ym-Ya)+c(Zm-Za) =0
SSI ax+by+cz-(aXa+bYa+cZa)=0
SSI ax+by+cz+d=0
avec d=-(aXa+bYa+cZa)

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.