b.py

Created by ramadiallo01

Created on November 11, 2021

747 Bytes


from math import*
 Si q>1, il existe aR+, q=1+a 
dou q^n=(1+a)^n 
or VnN, (1+a)^n>=1+nq 
ainsi dapres linegalite de bernoulli 
on a VnN, q^n>= 1+na 
or lim 1+na=+inf car a>0 
dapres le theoreme de comparaison 
lim q^n=+inf 

  Si q=1 alors VnN 
q^n=1 donc (q^n) converge vers 1.
  
  Si 0<q<1 alors 1/q>1 donc lim (1/q)^n=+inf car (1/q)^n=1/qn 
lim q^n=0 

  Si -1<q<0 alors on pose q=-q donc 0<-q<1 
(q^n)=(-q)^n=(-1)^nqn 
VnN, -qn<=q^n<=q^n<=qn car 
-1<=(-1)^n<=1 
dapres le cas precedent 
lim qn=0 et lim -q^n=0 
donc lim q^n=0 
dapres le theoreme des gendarmes 

 Si q<-1 : on pose q=-q donc q>1 
q^n=(-1)^nqn donc 
-q^n<=q^n <=qn 
or lim qn=+inf donc (qn) 
nest pas majore ni minore 
donc qn na pas de lim 

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.