dc.py

Created by prokls

Created on May 04, 2019

2.74 KB

Our implementation of the dragon curve. Implementation is joint work with Susi and Chris. Thanks!

We implemented 3 designs. All naive implementations ran out of memory after 9-11 iterations. But we generated A014707 (http://oeis.org/A014707) for 20 iterations and looked for patterns to compress the sequence. This resulted in the current implementation of turn() handling up to 20 iterations.

License: MIT license, Feedback: admin@lukas-prokop.at


import time      # 'cos I like to sleep
import kandinsky # 'cos I like to draw

# constants
L = 1   # Left turn
R = -1  # Right turn

# default configuration
iterations = 12
width = 4
x_center = 160
y_center = 111

# color wheel palette
colors = [
    (0, 0, 255), (0, 170, 255),
    (0, 255, 255), (25, 255, 160),
    (0, 255, 0), (160, 255, 25),
    (255, 255, 0), (255, 127, 0),
    (255, 0, 0), (255, 0, 170),
    (255, 0, 255), (127, 0, 255)
]
colors = [kandinsky.color(*c) for c in colors]

# algorithms
def make_turn(cur_x, cur_y, prev_x, prev_y, turn, w=width):
    """Given the segment's end points (prev and cur),
    and some turn direction, determine the next end point
    and draw all intermediate line points
    """
    if cur_x != prev_x:
        d = 1 if (prev_x > cur_x and turn == L
               or prev_x < cur_x and turn == R) else -1
        for yr in range(0, w + 1):
            yield cur_x, cur_y + d * yr
    elif cur_y != prev_y:
        d = 1 if (prev_y > cur_y and turn == R
               or prev_y < cur_y and turn == L) else -1
        for xr in range(0, w + 1):
            yield cur_x + d * xr, cur_y

X = 1826909284  # 0b1101100111001000110110001100100
def _turn64(i):
    j = i % 64
    if j == 15:
        return L
    elif j == 31:
        return L if (i % 128) < 64 else R
    elif j == 47:
        return R
    elif j != 63:
        return L if (X >> (j % 32)) & 1 == 0 else R
    else:
        return _turn64(i // 64)

def turn(i):
    """Returns whether a L or R turn shall be made in step i"""
    if i >= 1048575:
        raise NotImplementedError("only 20 iterations supported")
    j = i % 32
    if j == 15:
        return L if (i % 64) < 32 else R
    elif j != 31:
        return L if (X >> j) & 1 == 0 else R
    else:
        return _turn64(i // 32)

def _dragon(cur_x, cur_y, prev_x, prev_y, n, width):
    iteration = 1
    col = colors[iteration]

    for i in range(2**n - 1):
        if i == 2**iteration - 1:
            iteration += 1
            col = colors[iteration % len(colors)]
            time.sleep(0.5)
        for new in make_turn(cur_x, cur_y, prev_x, prev_y, turn(i), width):
            prev_x, prev_y = cur_x, cur_y
            cur_x, cur_y = new
            if 0 <= cur_x <= 320 and 0 <= cur_y <= 222:
                kandinsky.set_pixel(cur_x, cur_y, col)


def dragon(n=iterations, w=width):
    """Dragon curve implementation"""
    for rx in range(0, width + 1):
        kandinsky.set_pixel(x_center + rx, y_center, colors[0])
    _dragon(x_center + width, y_center, x_center, y_center, n, w)

# print manual
print('Dragon curve')
print('May 2019, MIT license')
print('by Chris, Lukas & Susi\n')
print('dragon({}, {})'.format(iterations, width))
print('  :n: iterations to do')
print('  :w: width of a segment')

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.