loiop3.py

Created by pianet-hugo-39

Created on March 23, 2022

619 Bytes


g(x)=0 admet exactement une solution
sur a;b car g(a)>0>g(b), g(x) est 
strictement croissante et continue
sur a;b. Donc d'apres le theoreme
des valeurs intermedaires g(x)=0
n'admet qu'une seule solution
s sur a;b.

convexité:
  Calculer f''(x)
  trouver x dans f''(x)=0
  faire le tableau
  convexe si f''(x)>0
           ou f'(x) croissant
           Cf au dessus des tangentes
  concave si f''(x)<0
           ou f'(x) decroissant
           Cf en dessous des tangentes
           
point d'inflexion= changement concave convexe

equation de la tangente:
  y=f(a)+f'(a)*(x-a)
  a=point d'abscisse
  
  

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.