jttt.py

Created by pianet-hugo-39

Created on December 15, 2021

1.18 KB


# Type your text here

arithmetique
Un=U0+n*r
Un=Uk+(n-k)r

geometriques
Un=q**n*U0
Un=q**(n-k)*Uk

Un+1= remplacer par la valeur de Un la formule de Un+1

sens de varation en calculant sa derive: positive ou negative
ou evaluer le signe de Un+1-Un

suite decroissante donc U0 est le majorant
suite croissante U0 est le minorant

pour la limite on peut factoriser par le monome le plus grand (souvent n)

racine(n)=+inf
n=+inf
n**2=+inf
n**p=+inf
1/racine(n)=0
1/n=0
1/n**2=0
1/n**p=0

suite q**n
si q<ou=1 pas de limite
si -1<q<1 0
si q>1    +inf

somme
L+L'=L+L'
L++inf=+inf
L+-inf=-inf
+inf++inf=+inf
-inf+-inf=-inf
+inf+-inf=FI

produit
L*L'=L*L'
L*inf=inf
inf*inf=inf
0*inf=FI

quotient
L/L'=L/L'
L/0=inf
L/inf=0
inf/L=inf
inf/inf=FI
0/0=FI

gendarme
Un et Vn converge vers L
et Un<Wn<Vn a partir d un rang p
alors Wn converge vers L
par exemple Un=sin(n)/n
-1<sin(n)<1
-1/n<sin(n)/n<1/n
lim -1/n=O
lim 1/n=0
donc lim sin(n)/n=0

comparaison
a partir d un rang p Un<ou=Vn
si lim Un=+inf alors lim Vn=+inf
si lim Vn=-inf alors lim Un=-inf
par exemple Un=(2+(-1)**n)n**2)
-1<(-1)**n
1<2+(-1)**n
n**2<(2+(-1)**n)*n**2
lim n**2=+inf
lim (2+(-1)**n)*n**2=+inf
donc lim (2+(-1)**n)n**2)=+inf

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.