jlyp3.py

Created by pianet-hugo-39

Created on February 27, 2022

1.44 KB


1.a
z1=(1+i)z0-i=-i, z2=(1+i)z1-i=(1+i)(-i)-i=-i+1-i=1-2i
z3=(1+i)(1-2i)-i=1-2i+i+2-i=3-2i

1.b
      1   2   3
 0.   oB  .   .

-1oA1 .   .   .
 
-2.   oA2 .   oA3

1.c
(z2-z1)/(zb-z1)=(1-2i+i)/(1+i)
               =(1-i)/(1+i)
               =((1-i)**2)/(1+1)
               =(1-2i+1)/2=-i
               
|(z2-z1)/(zb-z1)|=|-i|
|(z2-z1)|/|(zb-z1)|=1
|(z2-z1)|=|(zb-z1)|
A1A2=A1B

(>A1A2;>A1B)=arg(z2-z1)/(zb-z1)=arg(-i)=-pi/2

Le triangle BA1A2 est isocele recangle en A1

2.a
un+1=|zn+1-1|=|(1+i)zn-i-1|
=|(1+i)(zn-1)|=|1+i|*|zn-1|
=racine(2un)

un+1/un=racine(2), la suite (un)
est géométrique de raison q=racine(2)
et de premier terme u0=|-1|=1

2.b
On a alors un=u0*q**n=(racine(2))**n
On veut donc (racine(2))**n > 1000
Sachant que 2**10=(2)**20=1024,
on en déduit que n=20

3.a
1+i=racine(2)*((racine(2)/2)+(racine(2)/2)*i)
racine(2)*e**(i*pi/4)

3.b
Initialisation: n=0, on a 
1-(racine(2)**0*e**0)=1-1=0=z0

Hérédité : Soit n appartient N,
supposons que zn=1-((racine(2))**n)*e**(i*pi/4)
zn+1=(1+i)zn-i=(1+i)(1-(racine(2)**n)*e**(i*n*pi/4))-i
=1+i-(1+i)(racine(2)**n)*e**(i*n*pi/4)-i
=1-racine(2)*e**(i*pi/4)*(racine(2)**n)*e**(i*n*pi/4)
=1-(racine(2)**n+1)*e**(i*(n+1)*pi/4)
La propriete est hereditaire

Conclusion: zn=1-(racine(2)**n)*e**(i*n*pi/4)

3.c
z2020=1-(racine(2)**2020)*e**(i*2020*pi/4)
     =1-(racine(2)**2020)e**(i*505*pi)
     =1-(racine(2)**2020)*e**i*pi
     =1+(racine(2)**2020)
Le point A2020 est donc sur l'axe des abscisses

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.