jlyp1.py

Created by pianet-hugo-39

Created on February 06, 2022

832 Bytes


z=a+ib

|z|=rac(a**2+b**2)

z=a+ib=|z|(cos(O)+i*sin(O))

a=|z|(cos(O)) donc cos(O)=a/|z|
b=|z|(sin(O)) donc sin(O)=b/|z|


O=arg(z) c'est l'angle en radian au point |z|

|-z|=|z|
|opp(z)|=|z|
|z*z'|=|z|*|z'|
|z**n|=|z|**n
|1/z|=1/|z| si z pas egal a 0
|z'/z|=|z'|/|z| si z pas egal a 0

tout nombre complexe on associe un point M qui a pour coordonnees (a;b)
et un vecteur >w de coordonnees (a)
                                (b)
Soient M(zM) et N(zN) deux points du plan
et >u(z) et >v(z') deux vecteur du plan
>MN a pour affixe zN-zM
Le milieu de [MN] a pour affixe (Zm+ZN)/2
L'affixe du vercteur >u+>v est z+z'
Soit k un reel, le vecteur k*>u a pour affixe kz


Pour tout reel O on note: e**iO=cos(O)+isin(O)
forme exponentielle: z=r*e**i*O si r>0

AB=|zB-zA|
(>u,>AB)=arg(zB-zA)
(>AB,>CD)=arg((zD-zC)/(zB-zA))




During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.