jlyp.py

Created by pianet-hugo-39

Created on February 06, 2022

2.11 KB


1.a) Je calcule le module |1+i*rac(3)/3|=rac(1**2+(rac(3)/3)**2)=rac(1+3/9)
                                        =rac(12/9)=2/rac(3)
    z=r*e**io donc 1+i*rac(3)/3=2/rac(3)*(rac(3)/2+(rac(3)*rac(3)/2*3)*i)
     =2/rac(3)(rac(3)/2+(1/2)*i)=2/rac(3)(cos(pi/6)+i*sin(pi/6))
     =(2/rac(3))e**i(pi/6)

1+i*rac(3)/3=(2/rac(3))e**i(pi/6)

b)z1=(2/rac(3))e**i(pi/6)
  z2=(2/rac(3))e**i(pi/6)*(2/rac(3))e**i(pi/6)
    =((2/rac(3))e**i(pi/6))**2
    =(4/3)e**i(pi/3)

2.a) Je vais demontrer par recurence

initialisation: (2/rac(3))**0*e**i*0*(pi/6)=1=z0

heredite: je suppose que zn=((2/rac(3))**n)e**i*n*(pi/6) alors
 zn+1=(1+i(rac(3)/3))*zn
     =((2/rac(3))e**i(pi/6))*zn
     =(2/rac(3))e**i(pi/6)*((2/rac(3))**n)e**i*n*(pi/6)
     =((2/rac(3))**(n+1))e**i*(n+1)*(pi/6)
     
conclusion: pour tout entier naturel n : zn=((2/rac(3))**n)e**i*n*(pi/6)


b) An: ((2/rac(3))**n)*cos((n*pi)/6) ; ((2/rac(3))**n)*sin((n*pi)/6)
 donc >OA0 a les memes coordonnees
A0 (1;0) donc >OA0 (1;0)

Pour que les 3 points soient alignes il faut que >OA0 et >OAn soient colineaire

donc il faut que : 
  1*((2/rac(3))**n)*sin((n*pi)/6)-O*((2/rac(3))**n)*cos((n*pi)/6)=0

O*((2/rac(3))**n)*cos((n*pi)/6)=0
1*((2/rac(3))**n) ne peut pas =0
sin((n*pi)/6)=0 quand n=6 car sin(pi)=0

Donc ils sont alignés pour n=6

3.a) dn'(An;An+1)

b) d0=|z1-z0|=|1+i(rac(3)/3)-1|=|i(rac(3)/3)|=rac(3)/3

c) zn+2-zn+1=(1+i(rac(3)/3))*zn+1-(1+i(rac(3)/3))*zn=(1+i(rac(3)/3))(zn+1-zn)

d) 
dn+1=|zn+2-zn+1|=|(1+i(rac(3)/3))*zn+1-(1+i(rac(3)/3))*zn|
    =|(1+i(rac(3)/3))(zn+1-zn)|
    =(2/rac(3))*dn

Donc la suite est geotmetrique de raison 2/rac(3) et de 1er terme rac(3)/3

dn=q**n*d0=(2/rac(3)**n)*rac(3)/3

4.a) |zn|=(2/rac(3))**n 

|zn|**2+dn**2=(2/rac(3))**2n+(2/rac(3)**2n)*rac(3)/3
             =(1+1/3)((2/rac(3))**2n)
             =(4/3)*((2/rac(3))**2n)
             =(2/rac(3)**2)*((2/rac(3))**2n)
             =(2/rac(3)**2n+2)=(2/rac(3)**2(n+1))
             =|zn+1|**2

b) Vu que |zn|**2+dn**2=|zn+1|**2 alors OA**2n+1=OA**2n+An*AN**2n+1
   Grace a la reciproque du theoreme de pythagore, on peut donc dire que 
   le triangle OAnAn+1 est rectangle en An.
             

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.