mandel_xw.py

Created by parisseb

Created on September 06, 2020

661 Bytes

KhiCAS (MicroPython): fractale de Mandelbrot en exploitant la symétrie


#xwaspy
!!!!*&N>|python8W.Pmpat+$1J|angle8X*Bdian+$%J|!!!"vfrom graphic import +AJGrom math import +AJGrom cmath import +AJEef fra-3B9,&EM4GVBx}~
  w04)O.S^9
  h03UR,DAX,VE+  74V:,4%+  for y in range+':Moor+&EP-CEL-3E[
    c 03"Domplex+#US,D%Mh+HEL-#YZ-T5J
    for x in range+&AJ~
      z 03!Q
      for j in range+%ZNax}~
        z08IK+D)Lc
        if abs+(IJ0D)[
           break
      set8X"Jxel+(AMy,$%S.CJK+T)Q.TEJ
      set8X"Jxel+(AM73VZ,$%S.CJK+T)Q.TEJ
      c 03"D+X=\
!%%!!!!",SIA2H*Bctale de 47&Odelbrot plus rapide,#"Fn utilisant la sym[82Sie+C]!%!!!!!&Gra-3AS.D!M-D)S,$%Q}!!9!!!%")E2Pne)A!"!!!!!4M!$A!!!1&(raphic object!!!!!!!!!!!!

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.