face.py

Created by naul

Created on March 21, 2023

2.41 KB


from PyInquirer import prompt, Separator

# Define the sigmoid activation function
def sigmoid(x):
    return 1 / (1 + math.exp(-x))

# Define the neural network class
class NeuralNetwork:
    def __init__(self, input_size, hidden_size, output_size):
        # Initialize the weights and biases randomly
        self.weights1 = [[random.uniform(-1, 1) for _ in range(input_size)] for _ in range(hidden_size)]
        self.bias1 = [random.uniform(-1, 1) for _ in range(hidden_size)]
        self.weights2 = [[random.uniform(-1, 1) for _ in range(hidden_size)] for _ in range(output_size)]
        self.bias2 = [random.uniform(-1, 1) for _ in range(output_size)]

    def predict(self, inputs):
        # Compute the output of the hidden layer
        hidden_output = [sigmoid(sum(w * x for w, x in zip(self.weights1[i], inputs)) + self.bias1[i]) for i in range(len(self.bias1))]
        # Compute the output of the output layer
        output = [sigmoid(sum(w * x for w, x in zip(self.weights2[i], hidden_output)) + self.bias2[i]) for i in range(len(self.bias2))]
        # Return the predicted output
        return output

# Define the questions for the PyInquirer prompt
questions = [
    {
        'type': 'input',
        'name': 'input1',
        'message': 'Input 1:',
        'default': '0.5',
        'validate': lambda x: float(x) >= 0 and float(x) <= 1 or 'Input must be between 0 and 1',
    },
    {
        'type': 'input',
        'name': 'input2',
        'message': 'Input 2:',
        'default': '0.5',
        'validate': lambda x: float(x) >= 0 and float(x) <= 1 or 'Input must be between 0 and 1',
    },
    Separator(),
    {
        'type': 'input',
        'name': 'hidden_size',
        'message': 'Hidden layer size:',
        'default': '3',
        'validate': lambda x: int(x) >= 1 or 'Hidden layer size must be greater than or equal to 1',
    },
]

# Prompt the user for input
answers = prompt(questions)

# Parse the input
input1 = float(answers['input1'])
input2 = float(answers['input2'])
hidden_size = int(answers['hidden_size'])

# Create the neural network
neural_network = NeuralNetwork(input_size=2, hidden_size=hidden_size, output_size=1)

# Predict the output for the input
output = neural_network.predict([input1, input2])[0]

# Display the output on the Numworks screen
screen.print_at(f"Input 1: {input1:.2f}", 0, 0)
screen.print_at(f"Input 2: {input2:.2f}", 0, 1)
screen.print_at(f"Output: {output:.2f}", 0, 2)

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.