solution ou ay'+by=0 2y'-3y=0 ce-b/ax a=2 b=-3 y=ce3x/2 y'-2y=6x+7 y'-2y=0 a=1 b=-2 y=ce-(-2/1)x=ce2x y=ax+b y'=a a-2(ax+b)=6x+7 a-2ax+a-2b=6x+7 -2a=6 a=6/-2=-3 a-2b=7 -3-2b=7 -2b=10 b=-5 y=ce(-2x)-3x-5 solution ou ay'+by=k y'=0 y=k/b 2y'+y=1/2 a=2 b=1 k=1/2 y=k/b=1/2/1=1/2 solution generale ce-b/ax+k/b ce-1/2x+1/2 solution ou c(t)=Acos(wt+P)+Bsin(wt+P) Acos(wt+P)=-Awsin(wt+P) Asin(wt+P)=wAcos(wt+P) y'+y=sin2t g(t)=Acos(2t)+Bsin2t g'(t)=-2Asin(2t)+sin2t(B-2A) A+2B=0 B-2A=1 A=-2B B-2(2-B)=1 5B=1 B=1/5 A=-2/5 solution generale y=ce-t(-2/5)cos2t+1/5sin2t 1.résoudre y'+10y=0 ce-a/bt a=1 b=10 ce-10t 2.determ fontion constante y=k/b=6/10=0.6 3.deduire ensemble solus y(t)=ce-10t+0.6=f(t) 4.determ solus de lequ qui verif f(0)=0 y(0)=ce10*0+0.6 c*1+0.6 c=-0.6 f(t)=-0.6**-10t+0.6 =0.6(1-e-10t) 5.deduire express i(t) pour t>0 Li'+Ri=E -> 1/2i'+5i=3 enlev 1/2 -> x2 10i=6 6.deter lim t+inf i(t) lim i(t)=0.6 car lim e-10t =0 equa diff particuliere u'=f(t) y'=x2+x-1 trouver primitiv -> x3/3+x2/2+x+c 1.resoudr x'-4x=0 a=1 b=-4 y=ce4t 2.determ k par g(t)=ke3t g(t)=ke3t g't(t)=3ke3t g'-4g=2e3t 3ke3t-4ke3t=2e3t 3k-4k=2e3t k=-2 ay''+by'+cy=f(t) delta>0 f(t)=Aex1t+Bex2t x1=(-b+sqrtdelta)/2a x2(-b+sqrt-delta)/2a delta=0 f(t)=(A+Bt)ex0t x=-b/2a delta<0 f(t)=alpha+ibeta f(t)=(Acosbetat+Bsinbetat)ealphat Z1=(-b-isqrtdelta)/2a Z2=(-b-isqrt-delta)/2a delta=b**2-4AC z=a+ib zbarre=a-ib zzbarre=a2+b2 y''+w2y=0 ex a=1 c=w2 x2+w2=0 x=iw ou -iw f(t)=Acoswt+Bsinwt