equadiff.py

Created by maxime-rigotti

Created on April 10, 2024

1.48 KB


solution ou ay'+by=0

2y'-3y=0
ce-b/ax
a=2  b=-3
y=ce3x/2

y'-2y=6x+7
y'-2y=0
a=1  b=-2
y=ce-(-2/1)x=ce2x
y=ax+b
y'=a
a-2(ax+b)=6x+7
a-2ax+a-2b=6x+7
-2a=6 a=6/-2=-3  a-2b=7
-3-2b=7  -2b=10  b=-5
y=ce(-2x)-3x-5

solution ou ay'+by=k
y'=0  y=k/b
2y'+y=1/2
a=2  b=1  k=1/2
y=k/b=1/2/1=1/2

solution generale
ce-b/ax+k/b
ce-1/2x+1/2

solution ou 
c(t)=Acos(wt+P)+Bsin(wt+P)
Acos(wt+P)=-Awsin(wt+P)
Asin(wt+P)=wAcos(wt+P)

y'+y=sin2t
g(t)=Acos(2t)+Bsin2t
g'(t)=-2Asin(2t)+sin2t(B-2A)
A+2B=0
B-2A=1
A=-2B
B-2(2-B)=1
5B=1
B=1/5
A=-2/5

solution generale
y=ce-t(-2/5)cos2t+1/5sin2t

 1.résoudre y'+10y=0
ce-a/bt a=1 b=10
ce-10t
 2.determ fontion constante
y=k/b=6/10=0.6
 3.deduire ensemble solus
y(t)=ce-10t+0.6=f(t)
 4.determ solus de lequ qui verif f(0)=0
y(0)=ce10*0+0.6
c*1+0.6
c=-0.6
f(t)=-0.6**-10t+0.6
    =0.6(1-e-10t)
 5.deduire express i(t) pour t>0
Li'+Ri=E -> 1/2i'+5i=3
enlev 1/2 -> x2
10i=6
 6.deter lim t+inf i(t)
lim i(t)=0.6 car lim e-10t =0

equa diff particuliere
u'=f(t)
y'=x2+x-1
trouver primitiv
-> x3/3+x2/2+x+c


 1.resoudr x'-4x=0
a=1 b=-4
y=ce4t
 2.determ k par g(t)=ke3t
g(t)=ke3t
g't(t)=3ke3t g'-4g=2e3t
3ke3t-4ke3t=2e3t
3k-4k=2e3t
k=-2

ay''+by'+cy=f(t)

 delta>0
f(t)=Aex1t+Bex2t
x1=(-b+sqrtdelta)/2a
x2(-b+sqrt-delta)/2a
 
 delta=0
f(t)=(A+Bt)ex0t
x=-b/2a

 delta<0
f(t)=alpha+ibeta
f(t)=(Acosbetat+Bsinbetat)ealphat
Z1=(-b-isqrtdelta)/2a
Z2=(-b-isqrt-delta)/2a

delta=b**2-4AC

z=a+ib
zbarre=a-ib
zzbarre=a2+b2

y''+w2y=0
ex
a=1  c=w2
x2+w2=0
x=iw ou -iw

f(t)=Acoswt+Bsinwt

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.