thermo.py

Created by mathysappy

Created on April 25, 2024

1.05 KB


THERMO

PV=nRT
1 bar = 10puissance5 Pa
°C -> K (+273)
U = Ec micro + Ep micro

ΔU=Uf-Ui (J)
Cycle : ΔU = 0

Transfert th : zone chaude
vers zone froide

3 modes : 
  - conduction (contact entre
corps de T° diff)
  - rayonnement (electromagnetique)
  - convection (déplacement
macroscopique d un fluide)

1er principe thermodynamique
ΔEm + ΔU = W + Q
(système fermé)

Systeme au repos macroscopique
ΔU = W + Q

Systeme condense/incompressible
W = 0
ΔU = Q
Q = m x c x ΔT
Q = C x ΔT

Flux = P(th) 
     = Q / Δt
     = λ x (S/e) x ΔT
     = ΔT / R(th)
     
Resistance : capacite a s'opposer
au passage du transfert th
conducteurs = faible R
isolants = forte R

R(th) = e / (λ x S)
      = ΔT / Q
      
moins 1 sec : petites variations
-> petites lettres


Loi phenomenologie Newton
Phi(cc) = Flux (t)
        = h x S x (T(t)-Text)
Systeme se refroidit pdt petite
duree : 
dU = Q = - Phi(cc) x dt

Loi de Stefan-Boltzmann
Phi = sigma x T(puissance4)

Bilan radiatif terrestre 
Phi = 340 W.m-2
albedo
effet de serre
P(recue)+P(renvoyee)+P(emise)=0


             

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.