probas.py

Created by maiwenn1908

Created on May 21, 2023

967 Bytes


voir script primitives
p(X>..)=1-p(X<..)

loi normale = loi continue
=>loi représentée par une fonction 
appelée densité de probabilité
p(X=...)=0 car loi continue
p(m-s<X<m+s)=0.68
p(m-2s<X<m+2s)=0.954
p(X<=..)=p(X<..) same for >
paramètres N(m;s**2)
X>m+3s=X<m-3s car nombres à
meme distance de moyenne et 
courbe symétrique a moyenne
p(AuB)=p(A)+p(B)-p(AnB)
quand p(AnB)=0 les evenements
sont incompatibles donc
p(AuB)=p(A)+p(B)
p(a<X<b)=p(x<b)-p(x<a)

loi binomiale = loi discrète 
p(X=...)=0,..
p(X<=..)≠p(X<..) same for >
E(X)=np
V(X)= np(1-p)
s(x)=racine carré de V(X)
p(X<a)=p(X<=a-1)
avec calc p(a<X<b)=p(a+1<=X<=b-1)
sans calc p(a<X<b)=p(X<b)-p(X<=a)

loi exponentielle = loi continue
p(X=..)=0 car loi continue
p(X<=..)=p(X<..) same for >
p(X>..)=1-p(X<..)
p(A)sachant B = P(AnB)/P(A)
loi exp = loi sans mémoire
=> p(X>A) sachant X>B = p(X>A-B)
E(X)=1/λ et λ=1/moyenne
V(X)=1/λ**2
s(X)= 1/λ
p(X>a)=e**(-λa)
p(a<X<b)=p(x<b)-p(x<a)

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.