zfebg.py

Created by lucasdiago3

Created on March 28, 2024

1.42 KB


# Type your text here
equation polynomiales a coeff reels
 pour equation de type z^2=a
 si a >0, z= racine a
 si a<0 z= i racine -a ou z= -i racine -a
 
soit P : z--> az^2+bz+c une fonction polynome du second degré a coeff reels 
on note delta = b^2-4ac son discriminant

si delta > 0 , 2 solution reel 
si delta < 0 , 2 solutions complexex conjugées 
z1= -b-iracine |delta|/ 2a // z2= -b+iracine |delta| / 2a
si delta =0 Z0= -b/2a
cas 1 et 2  : P(z)= a (z-z1)(z-z2)
cas 3 : P(z)=a(z-z0)^2

(n) + (n)    = (n+1)
(k)   (k+1)    (k+1)

TRIANGLE DE PASCAL :
    0 1 2 3 4 5 
  0 1
  1 1 1
  2 1 2 1
  3 1 3 3 1
  4 1 4 6 4 1
  5 1 5 10 10 5 1 
  
  
(a+b)^n = k parmis n * a^k * b^n-k

exemple : 
  n=2 (a+b)^2 = a^2b^0 + 2ab + a^0b^2 
  n=3 (a+b)^3 = 1a^3b^0 + 3a^2b^1 + 1a^0 b^3
  
soit a et b deux nbr complexe , n app N 
a^n-b^n= (a-b) somme a^k b^n-k-1


Factorisation d'un polynome 
fonction polynome f(x)= anx^n + an-1x^n-1 .... + a1x+a0


soit P une fonction polynome a coeff reels 
un nbr complexe Z0 est une racine complexe de P s1 P(z0)=0

exemple : montrer que 1+i est racine de P:z--> z^3-2z+4
P(1+i)= (1+i)^3-2(1+i)+4 = 1-i+3i-3-2-2i+4=0

si z0 est racine complexe de P, alors z0 barre l'est aussi
une fonction polynome P de degré n est factorisable par z-a s'il existe une 
fonction polynome Q de degré n-1 telle que P(z)= (z-a)Q(z)

une fonction polynome P est factorisable par z-a si et seulement si a est racine de P 








During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.