maths_expert2.py

Created by lucasdiago3

Created on September 21, 2023

1.04 KB


# Type your text here
soit z un nbr complexe z=x+iy avec x,y reel
x etant la partie reel de z, noté Re(z)
y etant la partie imaginaire de z, noté Im(z)


soit z un nbr complexe, z est un 
imaginaire pur si Re(z)=0

Propriété:
deux nbr complexe sont egaux si et seulement
si ils ont la meme partie reel et la meme partie 
imaginaire : Z=0 --> Re(z)=0 et Im(z)=0

addition soustraction:
  z= x+y / z'= x'+iy'
  forme algebrique: 
    z+z'=x+x'+i(y+y')
    z-z'=x-x'+i(y-y')
    
  
  multiplication:
    (x+iy)(x'+iy')=(xx'-yy')+i(xy'+yx')
    
  En particulier: 
    (x+iy)(x-iy)= x^2-iy^2 = x^2+y^2
    
  
  quotient:
    
    exemple :
    2-3i/1-4i = (2-3i)(1-4i)/1+4i(1-4i)=-10-11i/1^2+4^2
    



puissances entieres:
  z^°=1
  z^-n=1/z^n


equations:
  exemple 
  z^2+1=0 --> z^2=-1=i^2
  
RECURENCE DE MERDE:

initialisation:
n=0 
||z^0||=1   ||(z)||=1
P(0) est vraie

heredité: on suppose que la propriété est vrai
a un rang K et on va montrer quelle est vraie au rang K+1
c'est a dire ||z^K+1||= ||(z)||^K+1

||z||= ||(z)||^k

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.