maths.py

Created by lucasdiago3

Created on November 16, 2022

812 Bytes

rien de fou


delta=b**2-4ac
si delta <0 alors il y a 0 solution
si delta=0 alors il y a 1 solution 
si delta=0 calcule : x= -b/2a
si delta>0 alors il y a 2 solution 
si delta>0 calcule : 
x1= -b+racine de delta /2a et x2= -b-racine de delta/2a

forme factorisé :
a(x-x1)(x-x2)

forme développé :
ax**2+bx=c

forme canonique :
a(x-alpha)**2+ beta 
alpha=-b/2a

beta=f(alpha)

exemple :
f(x)= X**2+x+1  on a donc a=1 /b=1 /c=1
alpha=-1/2x1
alpha=-1/2
f(alpha)=beta=(-1/2)**2-1/2+1 
f(alpha)=beta=f(-1/2)=3/
la forme canonique sera donc f(x)=1(x-(-1/2))**2+3/4


exemple pour passer d'une forme canonique a une forme développer :
f(x)=3(x-1)**2+2
f(x)=3(x**2-2x+1)+2
f(x)=3x**2-6x+5
pour calculer il faut connaitre les identité remarquable :
(a+b)**2=a**2+2ab+b**2
(a-b)**2=a**2-2ab+b**2
a**2-b**2=(a+b)(a-b) 

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.