my_scriptty.py

Created by loann-lefort

Created on April 20, 2022

866 Bytes


e nombre derivée de x en x0
est :lim f(x0+h)-f(x0)/h
coefficient directeur:

f'x0
equation reduite:
f'(x0)(x-x0)+f(x0)

la derivé represnente le coeff
directeur

soit f et g deux fonctions
derivables sur un intervalle
et K un reel :
(f+g)'=f'+g'
(kf)'=K*f'
​
​
f(x)=a f'(x)=0
f(x)=ax+b f'(x)=A
​
​
identité remarquable:
(a+b)2 = a2 + 2ab + b2
(a-b)2 = a2 – 2ab + b2
(a+b) (a-b) = a2 – b2
exercice placard =
1) v= L*P*H
v(x)=x*(12-x)(12-X)
v(x)=x*(12-x)2
v(x)=X(144-24x+X2)
=144x-24x2+x^3
=X^3-24x2+144x
2)v'(x)=3x2-48x+144

3)calcul racine =
v'(4)=3*42-48*4+144=0
v'(12)=3*122-48*12+144=0





ptroba=
p(A^d) = A * D

p=X\total

P(AuB)=P(A)+P(B)-P(A^B)

loi probabilité 2=

0:(1-P)puissance 2
1:2p(1-p)
2:P puissance 2

loi probabilité 3=

0:(1-P)puissance 3
1:3p(1-p)puissance de 2
2:3P puissance 2 (1-p)
3: P puissance de 3

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.