math.py

Created by lmbladier

Created on April 06, 2022

1.11 KB


Suites arithmetique:

U(n+1)=U(n)+r
U(n)=U(0)+nr/U(n)=U(1)+(n-1)r
S=Nombres de termes de S*((1er termes de S/dernier terme de S)/2)

Suites Geometriques:

U(n+1)=qU(n)
U(n)=U(0)*q^n/U(n)=U(1)*q^(n-1)
S=1er termes de S*((1-q^nb de termes de S)/1-q)
Variation:
q<0=oscillante
q=0 ou q=1=constante
q >: si +: pour o<q<1: decroi q>1: croi
     si -: pour o<q<1: croi q>1: decroi

La derivation:

y(a)=f'(a)(x-a)+f(a)
(u+v)'=u'+v'/(ku)'=k'*u'/(uv)'=u'v+uv'
(1/u)'=-u'/u^2
(u/v)'=(u'v-uv')/2
√u;u(x)>0; u'/2u
u^n;n=Z et n<0; nu'u^n-1
e^u; u'e^u

Geometrie dans l'espace:

RDC:AB+BC=AC
Parrallelograme: AB+AD=AC
plan ABC avec M:AM=xAB+yAC
Colineaire si:AM=kAB
Coplanaire si:w=au=bv
ou au+bv+cw=0
Base si u=wi+yj+zk
I milieu de AB: (Xb+XA)/2;etc)
norme de u=√a^2+b^2+c^2

Limites de suites:

Lim√n,n^2;e^n=+inf
limq^n=+inf
q>1
lim1/n=0
limq^n=0
n tendvers +inf
-1<q<1



P(Abar)=1-P(A)
P(AuB)=P(A)+P(B)-P(AnB)
PB(A)=P(AnB)/P(B)
Probabilité totale:P(B)=P(BnA)+P(BnA)
Indé si: P(AnB)=P(A)*P(B)
E(X)=np/V(x)=np(1-p)
Loi binomiale:
P(X=k)=(n;k)p^k(1-p)^n-k
P(X≥a)=1-P(X≤a-1)
P(a≤X≤b)=P(X≤B)-P(X≤A)
ET=√(V(X))

^(-X)=1/^(X)







During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.