bairstow.py

Created by lebourhisgilles

Created on February 01, 2020

1.64 KB

Résolution numérique d’équations polynomiales à coefficients réels de degré arbitraire dans C par la méthode de Bairstow (1920). La méthode perd en efficacité lorsqu’il existe des racines de multiplicité supérieure à 1.

Solving polynomial equations by a numerical method using complex numbers, thanks to Bairstow’s ideas (1920). It works fine except for the case of at least one root of multiplicity greater than 1.


import cmath
import random
'''
   Bairstow's Method where:
      r = Initial guess
      s = Initial guess
     roots = Empty Array
   a = Coefficient's vector with increasing powers ot the unknown
   g = Polynomial's degree   
''' 
def ctr(z):
  return round(z.real,7)+round(z.imag,7)*1j
def bairstow(a,r,s,g,roots):
  if(g<1):
    return None
  if(g==1):
    roots.append(float(-a[0])/float(a[1]))
    return None
  if(g==2):
    D = (a[1]**2.0)-(4.0)*(a[2])*(a[0])
    X1 = (-a[1] - cmath.sqrt(D))/(2.0*a[2])
    X2 = (-a[1] + cmath.sqrt(D))/(2.0*a[2])
    roots.append(X1)
    roots.append(X2)
    return None
  n = len(a)
  b = [0]*len(a)
  c = [0]*len(a)
  b[n-1] = a[n-1]
  b[n-2] = a[n-2] + r*b[n-1]
  i = n - 3
  while(i>=0):
    b[i] = a[i] + r*b[i+1] + s*b[i+2]
    i = i - 1
  c[n-1] = b[n-1]
  c[n-2] = b[n-2] + r*c[n-1]
  i = n - 3
  while(i>=0):
    c[i] = b[i] + r*c[i+1] + s*c[i+2]
    i = i - 1
  Din = ((c[2]*c[2])-(c[3]*c[1]))**(-1.0)
  r = r + (Din)*((c[2])*(-b[1])+(-c[3])*(-b[0]))
  s = s + (Din)*((-c[1])*(-b[1])+(c[2])*(-b[0]))
  if(abs(b[0])>1E-8 or abs(b[1])>1E-8):
    return bairstow(a,r,s,g,roots)
  if (g>=3):
    Dis = ((-r)**(2.0))-((4.0)*(1.0)*(-s))
    X1 = (r - (cmath.sqrt(Dis)))/(2.0)
    X2 = (r + (cmath.sqrt(Dis)))/(2.0)
    roots.append(X1)
    roots.append(X2)
    return bairstow(b[2:],r,s,g-2,roots)  
roots = []
a=[]
g=int(input("degree ? : "))
for k in range(0,g+1):
  A=float(input("Coef. X^"+str(g-k)+" ? : "))
  a.append(A)
a.reverse()
print(a)
k=1  
r = random.random()
s = random.random()
bairstow(a,r,s,g,roots)
print("\nFound Roots => \n")
for r in roots:
  print("R" + str(k) + " = " + str(ctr(r)))
  k += 1

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.