primitives.py

Created by laurahenriet4

Created on February 29, 2024

1.24 KB


primitive y'=f(x):
  
 une primitive= F(x)
toutes les primitives= F(x)=F(x)+k
la primitive = F(x)=F(x)+k 
->où on cherche k : réel avec un condition initiale 

calcul de primitives:
  
f(x)->F(x)
a constance->ax
x->1/2x2
x2->1/3xpuissance 3
xpuissance n->1/n+(1puissance n+1)
exp x->exp x
1/x pour x>0 ->ln(x)
1/racine de x pour x>0 -> 2racine de x

ku'->ku
u'+v'->u+v
2uu'->u2
u'exp u ->exp u
u'/u->ln(u)
u'/racine de u -> 2 racine de u

[exp x* exp y= exp x+y]
[exp -x= 1/exp x]

equation diff y'=ay:
  
f(x)=Cexp(ax) où C E R
trouver C en remplacant x par la condition intiale donnée 

equation diff y'=ay + b :
  
f(x)=Cexp(ax) - b/a 
quand a diff 0

calcul aires

Théorème f fonction continue positive
integrale (b;a)f(x)dx ua
=[F(x)]b;a
=F(b)-F(a)

valeur moyenne d'1 fonction
u=(1/b-a)interale(b;a)f(x)dx

fonction continue et positive:
  -relation de Chasles: a c b
  int(b;a)f(x)dx=int(c;a)""+int(b;c)""
  
  -invariance par symétrie: -a a
  int(0;-a)f(x)dx=int(a;0)""
  
  -invariance par translation: 0 T 2T 3T
  int(a+T;a)f(t)dt=int(T;0)""
  
fonction continue de signe qlc:
  théorème
->si f négative: aire représentée->sous axe abscisse
=-int(b;a)f(x)dx

->quand f change de signe, compte négativement aires sous abscisses

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.