maths.py

Created by laurahenriet4

Created on October 09, 2023

719 Bytes


lim np=+inf 
lim en=+inf 
lim-np=-inf
FI=
+inf -inf
0*inf
inf/inf
0/0
théorme de comparaison= 
Un<Vn Un=-inf donc Un=-inf
Un>vn Vn=+inf donc Un=+inf 
autre cas on peut pas conclure
théorme des gendarmes=
Un<Vn<Wn Un=l Wn=l donc Vn=l 
limites finies=
lim 1/np=0
suites géometrique=
recurence Un+1=Un*q
explicite Un=U0*qn
de la somme 
S=1er terme*1-q nb de termes/1-q
augmentation t% *(1+t/100)
diminution t%  *(1-t/100)
limite de qn=0 si 0<q<1
limite de qn= +inf si q>1
suite arithmético-geometrique 
Un+1=aUn+b
1 recherche de l-> equation a resoudre
l=al+b
2 systeme Un+1=aUn+b
          l=al+b
    l1-l2
(Un-l) est géometrique + raison q=a+premier terme 
3 formule+ limite (de qn)
-> Un-l= (U0-l)*qn

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.