FORMULE: Division euclédienne: diviseur * résulta droite + reste / diviseur F(p)= 28/(p+2)**4 => 3!/(p+2)**4 nb au dessus div par x! 3!=6 f(t)= 28/6* t**3 * e**-2t U(t) L[f'(t)] = p×F(p) – f(0+) L[f''(t)] = p**2 × F(p) – p × f(0+) – f’(0+) L[-t*f(t)U(t)] = F'(p) L[(f*g)(t)] = F(p) * G(p) ; (f*g)*h =g(f*h) L[f(t)*U(t)] = F0(p) * 1/ 1-e**-pt T F0(p)= S f(t)e**-pt * dt 0 τ=retard L [f(t-τ) U(t-τ)] = F(p) * e**-τp Theoreme valeur initiale limf(t)=lim[p*F(p)] t->0+ p-> +OO Theoreme valeur finale limf(t)=lim[p*F(p)] t->+00 p-> 0 EXO: x(O+)=0 y(0+)=1 (x'= -2x+y => p*X(p)-0 = -2X(p)+ Y(p) (y'= x-2y pY(p)-1 = X(p)-2Y(p) 2pi paire symetrique