Exo 1: 1 1 I= S (2x+2)dx = [2*1/2*x**2 +2x] = [x**2 +2x] -1 -1 = (1+2)-(1-2)=4 1 J= S (x+1)e**x dx -> J=e+e**-1 -1 1 1 J= // = [(x+1)*e**x] - S (1*e**x)DX -1 -1 1 ((1+1)e**1) - ((-1+1)e**-1) - [e**x] = 2e-(e**1 - e**-1) = e+e**-1 -1 K=J+I = e+e**-1 + 4 -> k est la valeur en unite d air comprise entre la courbe c, l axe des abscisses et les droites d equations x=-1 et x=1. Exo 3: 3 -> 1/at+b = 1/a* ln(at+b) 3 A=S 5/2x+3 dx = 5* 1/2x+3 = [5/2 ln(2x+3)] = 5/2 *ln(2*3+3) - (5/2 ln(2*1+3)) 1 1 = 5/2 (ln(9/5)) 0 -> u'cosu B=S -2cos(2x+pi/4)dx = -2 * (1/2* sin(2x+pi/4)) = [sin(2x+pi/4)] -pi/2 =-((sin2*0+pi/4) - (sin2*-pi/2+pi/4)) = -sqrt2 1/3 -> u'e**u = e**u C=S 3e**-3x+1 dx = -[e**-3x+1] = -(e**-3*1/3+1 -e**-3*0+1) =e-1 0 2 ->u'/u**2 = -1/u 2 D=S x-1/(x**2-2x+3)**2 dx = 1/2 S 2x-2/(x**2-2x+3)**2 = 1/2[-1/(x**2 -2x+3)] 1 1 pi/3 pi/3 E=S xsin(3x)dx = [x*(-1/3)*cos(3x)] - S 1*(-1/3)*cos(3x)dx 0 0 = (pi/3*(-1/3)cos(3*pi/3)) - (0*(-1/3)cos(3*0)) - [sin3x] = -pi/9cos(pi) - (sin(3*pi/3))-(sin(3*0)) = pi/9