Conversion 0 30 45 60 90 180 360 0 pi/6 pi/4 pi/3 pi/2 pi 2pi ?*pi/180 radians 180*?/pi degre ------------------------------- Tableau x 0 pi/6 pi/4 pi/3 pi/2 pi sin(x) 0 1/2 sqrt(2)/2 sqrt(3)/2 1 0 cos(x) 1 sqrt(3)/2 sqrt(2)/2 1/2 0 -1 ------------------------------- Formule : module(r) = sqrt(a**2+b**2) arg = cos(a/r) et sin (b/r) Xp = module(p) * cos(p) Yp = module(p) * sin(p) cos0 = x/IzI sin0 = y/IzI tan0 = y/x Form alge= y=a+ib cos(0)+isin(0) i2=-1 Form exp e**i0 * e**i0" = e**i(0+0") (e**i0)**n = e**in0 e**i0/e**i0=e**i(0-0") e**-i0=1/e**i0 Acos(wt+Q)= -Aw sin(wt+Q) Asin(wt+Q)= Aw cos(wt+Q) cos(0-0")=cos(0)cos(0")+sin(0)sin(0") cos(0+0")=cos(0)cos(0")-sin(0)sin(0") sin(0-0")=sin(0)cos(0")-sin(0)sin(0") sin(0+0")=sin(0)cos(0")+cos(0)sin(0") ------------------------------- Passer forme a l'autre : a+ib => e**i0 r=sqrt(a2+b2) cos(a/r) sin(b/r) = ?pi/? -> re**?pi/? e**i0 => a+ib e(cos(0)+isin(0)) = e(?+?i) = e*?+e*? x=IzI*icos(O en degre) y=IzI*isin(O en degre) IZ1+Z2I < ou = IZ1I + IZ2I IZ1*Z2I = IZ1I * IZ2I I1/Z1I = 1/Z1 IZ1/Z2I = IZ1I / IZ2I arg(Z1+Z2) = arg(Z1)- arg(Z2) arg(1/Z1)= -arg(Z1) arg(Z1/Z2) = arg(Z1)- arg(Z2) AB= IZB-ZAI arg(Zb-ZA) = (u;AB) (AB;AC)arg ZC-ZA / ZB-ZA