elec.py

Created by jilsaint90

Created on January 06, 2026

4.41 KB


# Ty
# --- DRUDE MODEL ---
# Métal : ions + free e- | n = N/V = p * Na * z / M
# Hyp : e- free/indpt (perfect gas), instant events (relaxat° time tau), continuous scattering.
# Prob scat durat° dt : dS = dt / tau
# Prob no scat btw 0 -> t : P(t) = e^(-t/tau)
# <t> = tau

# --- ELECTRICAL TRANSPORT ---
# J = nq <v> = sigma * E = n(q^2 * tau / m) * E = nq * mu * E
# mu = |q| * tau / m  (mobility)
# sigma = n * q^2 * tau / m = n * |q| * mu (conductivity)
# vd = -mu * E (drift velocity)
# p = 1/sigma (resistivity) | Matthiessen Rule : 1/tau = 1/tau_th + 1/tau_lattice

# --- FREE PATH ---
# l = <v> * tau = vth * tau | d btw 2 scatt.
# Collisions break periodicity crystal.
# dp(t)/dt = F - p/tau (variat° momentum) | damping frictional term
# p = m * v
# dv/dt = 0 -> steady regime
# Lorentz Force : F = q(E + v ^ B)

# --- HALL EFFECT ---
# courant plongé dans champs mag perpendiculaire —> 
# création champs élec transverse 
# Accumulat° charge e- 1 face -> autre (+) (mvt electrons)
# Deviat° charges -> E_Hall compense F_Lorentz
# E_Hall = Rh * J * B  -> steady rate.
# Rh = -1 / (n * q)

# --- THERMAL PROPERTIES ---
# E = d * grad(T) | (Seebeck) T != -> création E
# J = nq <v> = sigma * E = 0 -> <v> = 0
# vdeltaT = 1/2 (v(x-l) - v(x+l)) = -ldv/dx = -ldv/dT x dt/dx
# <v> = - (tau/6) * (dv^2/dT) * grad(T) + (q * tau / m) * E = 0
# E = (tau/6 * dv^2/dT) / (q * tau / m) * grad(T)
# = 1/3q x d/dt(1/2(mv^2)grad T
# Cv = n * dEa/dT = (1/V)x dE/dT
# Jq = -K * grad(T) (Fourier Law)
# K / (sigma * T) = L (Wiedemann Law)

# --- SOMMERFELD MODEL (QUANTIC E-) T=0 ---
# 1D : k = n * pi / L 
# H_hat * psi = E * psi 
# (Fermi) En = h_bar^2 * k^2 / (2m)
# v = 10vth = hk/m
# 3D : kx = 2 * nx * pi / Lx (BVK) + Bloch th.
# kf = (3 * pi^2 * n)^(1/3)
# Ef = h_bar^2 * (3 * pi^2 * n)^(2/3) / (2m)

# --- DENSITY OF STATES ---
# g(k) = 2L^3 / (2pi)^3 = 2V / (2pi)^3 (nb at/deltak)
# N = deltakzb x g(k) (souvent 2N)
# g(e) = C * sqrt(E) car dN = g(e) * dE

# --- LATTICE & BLOCH ---
# Reciprocal lattice : T . T* = 2pi
# a* = (2pi/V) * (b ^ c) | V*= (2pi)^3 / V
# Bragg : 2d sin(theta) = n * lambda

# --- BLOCH THEOREM ---
# H_hat * psi = E * psi | V(r + T) = V(r)
# psi_k(r) = u_k(r) * e^(i * k.r)
# u_k(r + T) = u_k(r)
# En,k = En,-k (Invariance)

# --- BVK : INFINITE CRYSTAL ---
# psi(x + Lx, y, z) = psi(x, y, z)
# Structure bands : E(k + G) = E(k)

# --- NATURE SOLIDES ---
# NB = total nb e- / nb available states in BZ = Nq/2N = q/2
# q = p * Za (nb at żonę elem* nb e- at)
# q odd : metals (unfilled band)
# q even : insulator, SC -> bandgap Eg (1-3 eV)

# --- CALCULATION METHOD (LCAO / TIGHT BINDING) ---
# 1. Base atomique : H_hat * phi_a(x) = Ea * phi_a(x) 
# 2. Fonction d'onde cristalline (Bloch) : 
# psi(x) = sum_n ( c_n * phi_a(x - na) ) avec c_n = e^(ikna) 
# 3. Énergie E(k) = <psi|H_hat|psi> / <psi|psi> 
# 4. Intégrales de saut (Near neighbour approximation) : 
# - <phi_n | H_hat | phi_n> = alpha 
# - <phi_n’ | H_hat | phi_n> = -beta (Dirac, n, n+/-1)
# 5. Développement : 
# E(k) = (1/N) * sum_n * sum_n' [ e^(ik(n'-n)a) * <phi_n|H_hat|phi_n'> ] 
# E(k) = alpha + (-beta)*e^(ika) + (-beta)*e^(-ika) 
# E(k) = alpha - 2*beta*cos(ka)

# --- KP METHOD (k.p) ---
# 1. Équation pour u_nk (partie périodique) : 
# [ (P_hat + h_bar*k*Id)^2 / 2me + V(r) ] * u_nk = Enk * u_nk 
# 2. Développement de l'opérateur : 
# [ P_hat^2/2me + (h_bar*k)^2/2me + h_bar(k.P_hat)/me + V(r) ] * u_nk = Enk * u_nk 
# 3. État non-perturbé (k=0) : 
# [ P_hat^2/2me + V(r) ] * u_n0 = En0 * u_n0 
 4. Opérateur de perturbation W_hat : 
# W_hat = (h_bar*k)^2 / 2me * Id + h_bar(k.P_hat) / me 
# 5. Correction d'énergie (Perturbation ordre 2) : 
# En(k) = En(0) + <un0|W_hat|un0> + Sum_n' [ |<un0|W_hat|un'0>|^2 / (En0 - En'0) ]
# W = (h_bar*k)^2 / 2me + h_bar/me * (k.p_hat)

# --- EFFECTIVE MASS ---
# 1/m* = (1/h_bar^2) * (d^2E / dk^2)
# m* > 0 (convex U) | m* < 0 (concave )
# <v> = 1/h_bar * dEk/dk
# a = F_ext / m*
# h_bar * dk/dt = F

# --- HOLE CONCEPT ---
# qh = -e = +e
# Holes in unoccupied states (m* < 0)

# --- PHONONS ---
# Quantized normal mode of vibration of crystal lattice.
# Acoustic (in phase) vs Optical (out of phase—> dipole oscillant qui interagit Lum)
# Nb modes : 3N | Acoustic -> 3 | Optical -> 3N - 3

# --- SEMICONDUCTORS (SC) ---
# Direct gap : GaAs (optoelectronic)
# Indirect gap : Si (need phonon)(microelectronics, solar cell)
# Optics : SC bcs Bandgap allows photon emission.
# nb free e- = metals>SC (cond can be turned by doping —> PN)pe your text here

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.