recurrence.py

Created by hicham-choukour

Created on September 30, 2024

815 Bytes


Démontrer par récurrence que, pour tout nombre entier n >= 1,
on 1×2 +2×3 +...+ n×(n+1)=n(n+1)(n+2)/3

On note Pn la proposition 
1×2 +2×3 +...+ n×(n+1)=n(n+1)(n+2)/3

Initialisation : Pour n = 1,
1×2=2 et 1(1+1)(1+2)/3=2 
donc P1 est vraie

Hérédité : Supposons que Pk est vraie 
pour un certain k  N* 
et montrons que Pk + 1 est vraie
Par hypothèse de récurrence, 
1×2 + 2×3 +...+ k×(k+1)=k(k+1)(k+2)/3
donc 
  1×2 + 2×3 +...+ k×(k+1) + (k+1)×(k+2) 
= k(k+1)(k+2)/3           + (k+1)×(k+2) 
= (k+1)(k+2)(k/3 + 1) 
= (k+1)(k+2)(k/3 + 3/3) 
= (k+1)(k+2)((k+1)/3) 
= (k+1)(k+2)(k+3)/3 
Pk+1 est donc vraie

Conclusion : la proposition Pn est vraie au rang n = 1 
et héréditaire donc, daprès le principe de récurrence, 
pour tout entier n  1, 1×2 + 2×3 + ... + n×(n+1) = n(n+1)(n+2)/3

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.