limites.py

Created by hicham-choukour

Created on January 21, 2025

3.37 KB


- Première image (Limites infinies des fonctions usuelles en ++ ou −∞−∞) :

# Limites en +∞
("lim(x→+∞) x = +∞")
("lim(x→+∞) x^2 = +∞")
("lim(x→+∞) x^3 = +∞")
("lim(x→+∞) x^n = +∞  (n entier ≥ 1)")

("lim(x→+∞) √x = +∞")
("lim(x→+∞) e^x = +∞")

# Limites en -∞
("lim(x→-∞) x = -∞")
("lim(x→-∞) x^2 = +∞")
("lim(x→-∞) x^3 = -∞")
("lim(x→-∞) x^n = +∞  si n est pair")
("lim(x→-∞) x^n = -∞  si n est impair")  
  
  

- Deuxième image (Limites infinies des fonctions usuelles
inverses en ++ ou −∞−∞) :
  
# Limites en +∞
("lim(x→+∞) 1/x = 0")
("lim(x→+∞) 1/x^2 = 0")
("lim(x→+∞) 1/x^3 = 0")
("lim(x→+∞) 1/x^n = 0  (n entier ≥ 1)")

# Limites en -∞
("lim(x→-∞) 1/x = 0")
("lim(x→-∞) 1/x^2 = 0")
("lim(x→-∞) 1/x^3 = 0")
("lim(x→-∞) 1/x^n = 0  (n entier ≥ 1)")

# Exponentielle négative
("lim(x→-∞) e^x = 0")


- Troisième image (Limites infinies des fonctions usuelles en 0) :
  
# Limites en 0+
("lim(x→0+) 1/√x = +∞")
("lim(x→0+) 1/x^2 = +∞")
("lim(x→0+) 1/x = +∞")

# Limites en 0-
("lim(x→0-) 1/x = -∞")


III. Opérations sur les limites

Limite d'une somme :
  
Si lim f(x) = l et lim g(x) = l', alors lim (f(x) + g(x)) = l + l'

limites_somme =
    "lim_f": "l", "lim_g": "l'", alors lim (f(x)+g(x)):"l + l'",
    "lim_f": "+∞", "lim_g": "+∞", alors lim (f(x)+g(x)): "+∞",
    "lim_f": "-∞", "lim_g": "-∞", alors lim (f(x)+g(x)): "-∞",
    "lim_f": "+∞", "lim_g": "-∞", alors lim (f(x)+g(x)): "F.I."


Limite d'un produit :
  
Si lim f(x) = l et lim g(x) = l', alors lim (f(x) * g(x)) = l * l'


    {"lim_f": "l > 0", "lim_g": "+∞", alors lim (f(x)*g(x)): "+∞"},
    {"lim_f": "l > 0", "lim_g": "-∞",  alors lim (f(x)*g(x)): "-∞"},
    {"lim_f": "l < 0", "lim_g": "+∞",  alors lim (f(x)*g(x)): "-∞"},
    {"lim_f": "l < 0", "lim_g": "-∞",  alors lim (f(x)*g(x)): "+∞"},
    {"lim_f": "+∞", "lim_g": "+∞",  alors lim (f(x)*g(x)): "+∞"},
    {"lim_f": "+∞", "lim_g": "-∞",  alors lim (f(x)*g(x)): "-∞"},
    {"lim_f": "-∞", "lim_g": "+∞", "resultat": "-∞"},
    {"lim_f": "-∞", "lim_g": "-∞", "resultat": "+∞"},
    {"lim_f": "0", "lim_g": "+∞ ou -∞", "resultat": "FI"},
    {"lim_f": "+∞ ou -∞", "lim_g": "0", "resultat": "FI"},
    
   
Limite d'un quotient (première partie, dénominateur non nul) :
  
Si lim f(x) = l et lim g(x) = l', alors lim (f(x) / g(x)) = l / l'

     "lim_f": "l", "lim_g": "l' ≠ 0", "resultat": "l / l'"},
    {"lim_f": "l", "lim_g": "+∞ ou -∞", "resultat": "0"},
    {"lim_f": "+∞", "lim_g": "l'>0", "resultat": "+infini"},
    {"lim_f": "+", "lim_g": "l'<0", "resultat": "-infini"},
    {"lim_f": "-∞", "lim_g": "l'>0", "resultat": "-infini"},
    {"lim_f": "-", "lim_g": "l'<0", "resultat": "+infini"},
    {"lim_f": "-infini ou +infini", "lim_g": "-infini ou +infini",
    "resultat": "F.I."},
    

Limite d'un quotient (deuxième partie, dénominateur nul) :
  
  
    "lim_f": "l > 0 ou +∞", "lim_g": "0 et g(x) > 0", "resultat": "+∞"},
    {"lim_f": "l > 0 ou +∞", "lim_g": "0 et g(x) < 0", "resultat": "-∞"},
    {"lim_f": "l < 0 ou -∞", "lim_g": "0 et g(x) > 0", "resultat": "-∞"},
    {"lim_f": "l < 0 ou -∞", "lim_g": "0 et g(x) < 0", "resultat": "+∞"},
    {"lim_f": "0", "lim_g": "0 ", "resultat": "F.I"}
  

On retrouve les quatre cas d'indetermination : 
  
  "+∞ - ∞" ; " ∞/∞ " ; "0 * ∞" et "0/0"


Propriétés pour tout entier naturel n ≥ 0
1. lim (x→+∞) (e^x / x^n) = +∞
2. lim (x→−∞) (x^n * e^x) = 0

Cas particuliers
1. lim (x→+∞) (e^x / x) = +∞
2. lim (x→−∞) (x * e^x) = 0

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.