fave.py

Created by granier-kloon

Created on October 01, 2025

2.3 KB


from kandinsky import *
from math import cos, sin, pi

def ligne(x1, y1, x2, y2, ep, c):
    dx, dy = x2 - x1, y2 - y1
    steps = int(max(abs(dx), abs(dy)))
    if steps > 0:
        for s in range(steps):
            for i in range(ep):
                for j in range(ep):
                    px = int(x1 + dx * s / steps + i - ep//2)
                    py = int(y1 + dy * s / steps + j - ep//2)
                    if 0 <= px < 320 and 0 <= py < 222:
                        set_pixel(px, py, c)

def fractale_lotus(x, y, r, a, p, c):
    if p == 0 or r < 3:
        return
    # Pétales en cercle avec courbure
    nb_petales = 8
    for i in range(nb_petales):
        ang = a + i * 2*pi/nb_petales
        # Pétale courbe (3 segments)
        for j in range(3):
            r1 = r * (0.3 + j * 0.35)
            r2 = r * (0.3 + (j+1) * 0.35)
            ang_offset = (j - 1) * 0.15
            x1 = int(x + r1 * cos(ang + ang_offset))
            y1 = int(y + r1 * sin(ang + ang_offset))
            x2 = int(x + r2 * cos(ang + ang_offset))
            y2 = int(y + r2 * sin(ang + ang_offset))
            ligne(x1, y1, x2, y2, max(1, 3-p), c)
    # Sous-lotus aux extrémités des pétales principaux
    if p > 1:
        for i in range(nb_petales):
            ang = a + i * 2*pi/nb_petales
            x2 = int(x + r * cos(ang))
            y2 = int(y + r * sin(ang))
            fractale_lotus(x2, y2, r*0.35, ang, p-1, c)

def fractale_reseau(x, y, l, a, p, c):
    if p == 0 or l < 4:
        return
    # Réseau hexagonal
    for i in range(6):
        ang = a + i * pi/3
        x2 = int(x + l * cos(ang))
        y2 = int(y + l * sin(ang))
        ligne(x, y, x2, y2, 1, c)
        # Récursion
        fractale_reseau(x2, y2, l*0.5, a, p-1, c)

# Fond dégradé bleu-violet profond
for y in range(222):
    ratio = y / 222
    r = int(30 + ratio * 25)
    g = int(25 + ratio * 30)
    b = int(65 + ratio * 35)
    fill_rect(0, y, 320, 1, (r, g, b))

# Réseau de fond (couleur subtile bleu-vert transparent)
positions_reseau = [
    (60, 50), (160, 50), (260, 50),
    (60, 111), (260, 111),
    (60, 172), (160, 172), (260, 172)
]
for px, py in positions_reseau:
    fractale_reseau(px, py, 25, 0, 4, (60, 90, 110))

# Lotus central principal (couleur éclatante cyan-blanc)
fractale_lotus(160, 111, 75, 0, 3, (120, 240, 255))

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.