série de Fourier m(t) : m(t) = a0 + ∑ (an cos(2πnf0t) + bn sin(2πnf0t)) an= 2/T * int(0,T,m(t)*cos(2πnf0t)dt) bn= 2/T * int(0,T,m(t)*sin(2πnf0t)dt) a0= 1/T * int(0,T,m(t)dt) ///////////////////////// transformée de Fourier p(t)=cos(2πf0t) e^(2πjfpt)+e^(-2πjfpt) P(t)= ---------------------- 2 P(t)= 1/2 *(int(-oo,oo,e^(2πjfpt)dt) + int(-oo,oo,e^(-2πjfpt)dt)) δ(f-fp)+δ(f+fp) P(t)= ----------------- 2 ///////////////////////// transformée de Fourier p(t)=sin(2πf0t) e^(2πjf0t)-e^(-2πjf0t) P(t)= ---------------------- 2 P(t)= 1/2 *(int(-oo,oo,e^(2πjf0t) -e^(-2πjf0t)dt)) δ(f-f0)-δ(f+f0) P(t)= ----------------- 2 ///////////////////////// autocorrélation (sign carré) de x [Rxx, tau] = xcorr(x,x) Rxx(T) = ∑ x(t).x(t-T) rect(t) rect(t-T) Rxx(T) = -------.---------- [T] [T] ///////////////////////// autocorrélation (sign sin) de p [Rpp, tau] = xcorr(p,p) x(t) - x(t-T) Rpp(T) = --------------- T X(f)-X(f)e^(-2πjft) Rpp(T) = ------------------ T //////////////////////// transformée de Hilbert x(t)=A.rect(t)/[T] xh(t)= x(t) (*) 1/πT rect(t) 1 = A.------- (*) ---- [T] πT -T/2 = A/π (ln|t-u|) T/2 A |t+(T/2)| = --- ln(---------) π |t-(T/2)| tracer : | | /|\ | |---/ | \--- ------------------------ --\ | /---| | \|/ | |