signal_15_12_23.py

Created by famille-bvc

Created on December 18, 2023

1.56 KB


série de Fourier m(t) :

m(t) = a0 +  (an cos(2πnf0t)
+ bn sin(2πnf0t))

an= 2/T * int(0,T,m(t)*cos(2πnf0t)dt)

bn= 2/T * int(0,T,m(t)*sin(2πnf0t)dt)

a0= 1/T * int(0,T,m(t)dt)

/////////////////////////
transformée de Fourier p(t)=cos(2πf0t)

      e^(2πjfpt)+e^(-2πjfpt)
P(t)= ----------------------
                2

P(t)= 1/2 *(int(-oo,oo,e^(2πjfpt)dt)
+ int(-oo,oo,e^(-2πjfpt)dt))

       δ(f-fp)+δ(f+fp)
P(t)= -----------------
              2
              
/////////////////////////
transformée de Fourier p(t)=sin(2πf0t)

      e^(2πjf0t)-e^(-2πjf0t) 
P(t)= ----------------------
                2
                
P(t)= 1/2 *(int(-oo,oo,e^(2πjf0t)
-e^(-2πjf0t)dt))

       δ(f-f0)-δ(f+f0)
P(t)= -----------------
              2

/////////////////////////
autocorrélation (sign carré) de x

[Rxx, tau] = xcorr(x,x)

Rxx(T) =  x(t).x(t-T)

         rect(t)  rect(t-T)
Rxx(T) = -------.----------
           [T]       [T]

/////////////////////////
autocorrélation (sign sin) de p

[Rpp, tau] = xcorr(p,p)

          x(t) - x(t-T)
Rpp(T) = ---------------
                T

        X(f)-X(f)e^(-2πjft)
Rpp(T) = ------------------
                 T

////////////////////////
transformée de Hilbert

x(t)=A.rect(t)/[T]

xh(t)= x(t) (*) 1/πT

    rect(t)       1
= A.------- (*) ----
      [T]        πT
      
              -T/2
= A/π (ln|t-u|)
               T/2

   A     |t+(T/2)|
= --- ln(---------)
   π     |t-(T/2)|
   
   
tracer :
  
      |     |    /|\
      |     |---/ | \---
------------------------
  --\ | /---|     |
     \|/    |     |
     

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.