equa_diff.py

Created by famille-bvc

Created on May 19, 2022

1.5 KB


### 1er ordre

## sans x

#y'=ay -> y(x)=ke(ax)

#y'=ay+b -> y(x)=ke(ax)- b/a

## avec x

#y'+a(x)y=0 -> y(x)=ke(-A(x))
# avec A primitive de a

#y'+a(x)y=b(x) -> variation cst

#1) resoudre yhom
#2) yp = yhom avec k->g(x)
#3) calculer yp'
#4) reinjincter yp et yp' dans Eq
#5) calculer g(x)
#6) remplacer g(x) dans yp
#7) conclure y(x) = yp + yhom

## polynome

# y'+y = polynome

#yp = polynome
#yp' = deriv polynome
#reinjecter dans l'Eq
#resoudre le système
#y(x)=yhom+(ax^2+bx+c...)

#########################

### 2nd ordre

# ay''+by'+c = 0

# p(x)=ax^2+bx+c faire delta

# si delta > 0:r1 et r2 -b-+Vd/2a
#y(x)=λe(r1x)+μe(r2x) , (λ,μ)ER^2

# si delta = 0: r0 = -b/2a
#y(x)=(λ+μx)e(r0x) , (λ,μ)ER^2

# si delta < 0: racines complexes
# r1 = r0 + iw , r2 = r0 - iw
# y(x)=λe(r0x)[sin(wx+C)] ou
# y(x)=e(r0x)[λcos(wx)+μsin(wx)]

### polynome

# y''+y'+y = polynome
# ay''+by'+cy=P(x)e(kx)
#si k pas racine on calcule 
#yp avec polynome normal
#si k racine // ploynome degré +1

#yp = polynome
#yp' = deriv polynome
#yp'' = deriv 2nd polynome
#reinjecter dans l'Eq
#resoudre le système

#y(x)=yhom+(ax^2+bx+c...)

###########################

# Bernouilli

# a(x)y'+b(x)y=c(x)y^n

#diviser par y^n
#simplifier equation (remonte y^n)
# ex : a(x)y'/y^n => a(x)y'y^-n
#on pose X = y^... (y^-n dans l'ex)
#calculer X'
#remplace les y par les X dans EQ
#methode var const jusqu'a yp = ...
#on résoud y = .. avec X posé avant
#=> on remplace le X de y=...*/X
#   par yp trouvé avant
#Ce qui donne la solution de y

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.