# DL ordre 3 et x->0 # sin(ln(1+x)) # X=ln(1+x) lim X=0 # x->0 # sinX= x- x^3/6 + o(x^3) # X=x- x^2/2 + x^3/3 + o(x^3) # X^3= X^2*X = (x- x^2/2 + x^3/3 +o(x^3))^2 * (x- x^2/2 + x^3/3 +o(x^3)) # X^3= (x^2 - x^3 + o(x^3))(x - x^2/2 + x^3/3 +o(x^3)) # X^3= x^3 +o(x^3) # sinX = x- x^2/2 + x^3/3 + o(x^3) - 1/6 *x^3 +o(x^3) # sin(ln(1+x))=x- x^2/2 + 1/6 *x^3 +o(x^3) # e^2x * ln(1+x) # e^2x = 1 + 2x + 1/2 *(2x)^2 + 1/6 *(2x)^3 +o(x^3) # = 1 + 2x + 2x^2 + 4/3 *x^3 +o(x^3) # ln(1+x) = x - x^2/2 + x^3/3 + o(x^3) # e^2x * ln(1+x) = (1+2x+2x^2 + 4/3 * x^3 +o(x^3))(x- x^2/2 +x^3/3 + o(x^3)) # = x- x^2/2 + x^3/3 +2x^2 - x^3 + 2x^3 +o(x^3) # = x + 3/2 *x^2 + 3/4 *x^3 + o(x^3) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #