# forme algébrique : # 7/5 + 8/5i # # equation : # delta = ... # -b-iVd -b+iVd #-------- ------- # 2a 2a # passage exp en algé # # @ = teta # exp |z|e^@ # # trig |z|x( cos@ + i sin@ ) # # mettre 2kpi en forme exp # # ------------------------ # # prouver que x une racine # remplace les z par x et # si = 0 c'est une racine0 # # ------------------------ # # A = sin(x+y)-sin(x-y) # = sinxcosy+cosxsiny-sinxcosy+cosxsiny # = 2cosxsiny # # B = cos(x-y)+cos(x+y) # = cosxcosy+sinxsiny+cosxcosy-sinxsiny # = 2cosxcosy # # C = sin(x+y)*sin(x-y) # = (sinxcosy+cosxsiny)(sinxcosy-cosxsiny) # = sin^2 x cos^2 y - cos^2 x sin^2 y # # D = cos(x-y)*cos(x+y) # = (cosxcosy+sinxsiny)(cosxcosy-sinxsiny) # = cos^2 x cos^2 y - sin^2 x sin^2 y # # sin(a+b)= SC+CS # cos(a+b)= CC-SS # sin(a-b)= SC-CS # cos(a-b)= CC+SS # #-------------------------- # -> -> -> # Zab = Zb-(Za) # # longueur AB : # AB = |Zb - Za| # # pour avoir l'angle de C # # Za-Zc # ----- # Zb-Zc # # # Zv/Zu = reel -> colinéaires # = imaginaire pur orthogonaux # # # triangles deux long== # -> isoceles # # triangles trois long== # -> equilateral