le0109.py

Created by emiledu90

Created on January 25, 2023

1.33 KB

jouer sur la calculette


methode de la variation de la constante:
  y'(x)+4y(x)=sin(3x)exp(-4x)
  
Equation homogène associée:
  
  y'(x)+4y(x)=0
  y0=lambda*exp(-primitve(b/a))
soit y0=lambda*exp(-4x)

determinons une solution particuliere de l'equation E
sous la forme:
  yp(x)=lambda(x)exp(-4x)à l'aide de la methode de la variation de la constante
  
puis on calcule yp'

yp solution de l'equation E,yp'+yp=sin(3x)exp(-4x)

on finit par trouver lambda'
en calculant sa primitive on troube lambda
(parfois besoin d'une IPP)
(pour rappel IPP=S:u(t)*v(t)-Su'(t)*v(t)dt
ensuite avec lambda on ecrit:
  yp en remplacant le lambda 
  
puis : CCL les solutions de l'equation E:
  Y(x)=y0+yp (on remplace lambda uniquement dans yp)
  
  
  Equation du second ordre:
    souus forme :
      x''+x'+x=fct
      
    1ere etape:enoncer l'equation caracteristique tel que:
      r**2+r+k=0
      calculer delta tel que delta=B**2-4ac
      
  puis 3 options:
    
si delta>0 alors:
  r1=(-b-sqrt(delta))/2a
  r2=(-b+sqrt(delta))/2a
  sol de l'equation =
  y(t)=C1*exp(r1t)+C2*exp(r2t)
  
si delta=0 alors:
  r0=-b/2a
  sol de l'equation=
  y(t)=(C1t-C2)exp(r0t)

si delta>0 alors:
  r1=(-b-isqrt(-delta))/2a
  r2=(-b+isqrt(-delta))/2a
  normalement :
    r1=a+ib et r2=a-ib
  sol de l'equation=
  y(t)=exp(at)(C1cos(bt)+C2sin(bt)

Prreciser que C1 et C2 sont des constantes réeles

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.