# Correction du Travail de Groupe n°7 - Géométrie dans l'espace
# Repère orthonormé (A; AB, AD, AE)
# --- PARTIE A : CONSTRUCTION ET COORDONNÉES ---
# Définition des sommets de base du cube (unité = 1 côté du cube)
A=(0,0,0)# Origine du repère
B=(1,0,0)# Vecteur AB
D=(0,1,0)# Vecteur AD
E=(0,0,1)# Vecteur AE
C=(1,1,0)# Sommet opposé à A sur la base ABCD
H=(0,1,1)# Sommet opposé à B sur la face latérale ADHE
# 1. Calcul des coordonnées des points I, J et K [cite: 17]
# Vecteur AI = AB + 1/3 AD [cite: 19]
I=(1,1/3,0)# Vecteur AJ = 2/3 AD + AE [cite: 19]
J=(0,2/3,1)# Vecteur AK = 3/4 AB + AE [cite: 18]
K=(3/4,0,1)# 2. Vecteurs directeurs [cite: 20]
# Formule : Vecteur(X2-X1, Y2-Y1, Z2-Z1)
vecteur_IJ=(J[0]-I[0],J[1]-I[1],J[2]-I[2])# (-1, 1/3, 1) [cite: 64, 87]
vecteur_IK=(K[0]-I[0],K[1]-I[1],K[2]-I[2])# (-1/4, -1/3, 1) [cite: 65, 78]
# 3. Justification du point L sur l'arête [CD] [cite: 21]
# Tout point sur [CD] a une ordonnée y=1 et une cote z=0.
# Son abscisse 'a' varie entre 0 (D) et 1 (C)[cite: 22].
# L = (a, 1, 0)
# --- PARTIE B : CALCULS AVEC a = 1/4 [cite: 24, 25] ---
a=1/4L=(a,1,0)# L(1/4, 1, 0)
# 1. Démontrer que IKJL est un parallélogramme [cite: 26]
# On compare les vecteurs IK et LJ
vecteur_LJ=(J[0]-L[0],J[1]-L[1],J[2]-L[2])# (-1/4, -1/3, 1) [cite: 77, 79]
# Puisque vecteur_IK == vecteur_LJ, IKJL est un parallélogramme[cite: 81].
# 2. Centre du parallélogramme [cite: 27]
# C'est le milieu de la diagonale [IJ] [cite: 82]
centre_IKJL=((I[0]+J[0])/2,# (1 + 0) / 2 = 0.5
(I[1]+J[1])/2,# (1/3 + 2/3) / 2 = 0.5
(I[2]+J[2])/2# (0 + 1) / 2 = 0.5
)# centre_IKJL = (0.5, 0.5, 0.5) [cite: 83, 84, 85]
# 3. Intersection des droites (IJ) et (BH) [cite: 33]
# Droite (IJ) : x = 1-t, y = 1/3 + 1/3t, z = t [cite: 29]
# Droite (BH) : B(1,0,0) et H(0,1,1). Vecteur BH(-1, 1, 1) [cite: 91]
# Équations (BH) : x = 1-k, y = k, z = k [cite: 93]
# Pour l'intersection, on égalise les z : t = k.
# On remplace dans les y : 1/3 + 1/3t = t => 1/3 = 2/3t => t = 0.5.
# Si t = 0.5, alors x = 1 - 0.5 = 0.5.
point_intersection=(0.5,0.5,0.5)#
# 4. Le centre du cube appartient-il au plan (IJK) ? [cite: 34]
# Le centre du cube est le milieu de [AG], soit (0.5, 0.5, 0.5).
# C'est exactement le point d'intersection trouvé précédemment et le centre
# du parallélogramme IKJL qui appartient au plan (IJK).
# Réponse : OUI.
LN"""
FICHE DE RÉVISION : LE LOGARITHME NÉPÉRIEN (ln)
Niveau : Terminale Spé Maths
"""importmath# --- 1. PROPRIÉTÉS ALGÉBRIQUES ---
# Soient a > 0 et b > 0
defproprietes_algebriques(a,b,n):# Relation fondamentale : le produit devient somme
# ln(a * b) = ln(a) + ln(b)
# Le quotient devient différence
# ln(a / b) = ln(a) - ln(b)
# L'inverse
# ln(1 / a) = -ln(a)
# La puissance (n est un entier)
# ln(a**n) = n * ln(a)
# La racine carrée
# ln(sqrt(a)) = 0.5 * ln(a)
pass# --- 2. RELATIONS AVEC L'EXPONENTIELLE ---
# La fonction ln est la réciproque de la fonction exp
defrelations_exp():# ln(1) == 0
# ln(math.e) == 1
# Pour tout x réel :
# ln(exp(x)) == x
# Pour tout x > 0 :
# exp(ln(x)) == x
pass# --- 3. ANALYSE ET VARIATIONS ---
# Domaine de définition : ]0 ; +inf[
defanalyse_fonction():# Dérivée de ln(x) :
# f'(x) = 1 / x
# Dérivée d'une forme composée ln(u) :
# (ln(u))' = u' / u (avec u(x) > 0)
# Limites aux bornes :
# lim x->0+ ln(x) = -inf
# lim x->+inf ln(x) = +inf
pass# --- 4. CROISSANCES COMPARÉES ---
# "L'exponentielle gagne sur x, et x gagne sur le ln"
defcroissances_comparees():# lim x->+inf (ln(x) / x) == 0
# lim x->0+ (x * ln(x)) == 0
pass# --- 5. RAPPEL RÉSOLUTIONS D'ÉQUATIONS ---
# ln(a) = ln(b) <=> a = b (avec a, b > 0)
# ln(x) = k <=> x = exp(k)
Vecteur"""
FICHE DE RÉVISION : VECTEURS ET GÉOMÉTRIE DANS L'ESPACE
Niveau : Terminale Spé Maths
"""importmath# --- 1. CALCULS DE BASE ---
defcalculs_de_base(xA,yA,zA,xB,yB,zB):# Vecteur AB
# AB_vec = (xB - xA, yB - yA, zB - zA)
# Distance AB (Norme)
# distance = sqrt((xB-xA)**2 + (yB-yA)**2 + (zB-zA)**2)
# Milieu du segment [AB]
# milieu = ((xA+xB)/2, (yA+yB)/2, (zA+zB)/2)
pass# --- 2. PRODUIT SCALAIRE ET ANGLE ---
defproduit_scalaire(u,v):"""
u et v sont des listes [x, y, z]
"""# Formule analytique
# dot_product = u[0]*v[0] + u[1]*v[1] + u[2]*v[2]
# Test d'orthogonalité
# si dot_product == 0 alors u et v sont orthogonaux
# Pour l'angle : cos(theta) = (u.v) / (||u|| * ||v||)
pass# --- 3. DROITES ET PLANS ---
defgeometrie_analytique():# DROITE : Système d'équations paramétriques
# x = xA + k*a
# y = yA + k*b
# z = zA + k*c
# PLAN : Équation cartésienne
# a*x + b*y + c*z + d = 0
# (a, b, c) sont les coordonnées du VECTEUR NORMAL au plan
pass# --- 4. PROPRIÉTÉ DE COLLINÉARITÉ ---
# u et v sont colinéaires s'il existe un réel k tel que u = k*v
# Cela signifie que leurs coordonnées sont proportionnelles.
During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:
Ensure the proper functioning of the site (essential cookies); and
Track your browsing to send you personalized communications if you have created a professional account on the site and can be contacted (audience measurement cookies).
With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.