recu.py

Created by comecp

Created on October 17, 2023

545 Bytes


Soit Un: U0=
         Un+1=

Pour tout entier naturel n, 
on pose (Pn): "Un="

  Initialisation(n=)
  On a : U0=
         Un=

  Donc Pn est:vrai pour n=0

  Hérédité: Soit n un entier naturel
  Supposons que Pn est vraie, c.a.d : Un=
  Montrons que Pn+1 est vraie, c.a.d :Un+1=

  On a par hypothèse de récurence : Un=Un+1

  Donc Pn+1 est vraie

  Conclusion : La proposition est 
  initialisé au rang ... 0 et est
  hereditaire.
  D'apres le principe de 
  récurrence on generalise
  et Pour tout n : 
  Pn équivaut a  Un=

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.