convexeconcave.py

Created by comecp

Created on December 11, 2023

611 Bytes


--FONCTION DERIVEE SECONDE--


ETUDE DE LA CONVEXITE
  
calcul f'' donc on dérive f'

- pour f'' polynome, 
fait delta et cherche les 
solutions
delta= b^2-4ac

si Si Δ < 0 alors 
l' équation admet aucune 
solution réelle.


si dela > 0 alors:
  
x1 = (b  Δ ) / (2a) et 

x2 = (b + Δ ) / (2a) 


si delta = 0, alors l'équation 
admet une solution réelle
double notée x0.

On a alors : x0 = −b / (2a)



- pour f'' avec un simple x, 
alors équation = 0




f'' décroit alors fonction concave
f'' croit alors fonction convexe

Sur l'intervalle [] la fonction convexe, concave...

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.