proba.py

Created by claralgrd1007

Created on March 03, 2025

1.44 KB


P(AM)=P(A)xPa(M)
P(M)=P(A)xPa(M)+P(A)...
Pm(A)=P(AM)/P(M)

Independant = mm valeur 
pas ind = pas mm valeur 
P(A)xP(B)= 
et P(AB)= 
donc 

E(X)=n x p on peut esperer 
gagner ... 
V(X)=np(1-p)
δ(X)=racine np(1-p)
cloche est plus large et plus 
petite que celle de donc α est
plus grand. 

X~B(10;0,3) car on repete n=10
fois de facon identique et 
independante une mm epreuve
de bernoulli dont le succes 
est "" avec p=0,3
P(G>100)=P(G101)=
P(G<100)=P(G99)=
P(90<G<110)+P(91G109)= 
P(V=2)= 
p(X = k) = (n)x pk x (1-p)n-k
           (p)
justifier epreuve bernoulli =
succes avec p =

hypothese assimiler schema b =
identique + independante 
n = et p = 

succession epreuve independan
Oui car chaque tirage est 
avec remise donc un tirage
na pas dinfluence sur les
autres
OU
Non car il ny a pa de remise
: le 1er tirage a une 
influence sur le second

ccalculer univers =
 Ω = ({;;; })5 x mm tirage
calculer = p({ ;;;})=p(1)2 x p

proba obtenir boule J B V =
p({J;B;V })= P(J)xP(B)xp(V)

p(2<X<24)= 0,96 > 0,95
oui il s'agit bien dun 
intervalle de fluctuation au
seuil de 95% 

Ln = ln(x)= 1/x
ln(axb)=ln(a)xln(b)
ln(a puissance n)=n x ln(a)
ln(a/b)=ln(a) - ln(b)
ln(1/a)= -ln(a)
ln(racine a)= 1/2ln(a)
Ln = ]0;+infini[
 Ln(x)=eln(x)=x
 ln(ex)=x
 
 ex = e2ln3 = ln4 =
 eln(3 au carre) = ln(4)
 = eln(9x4)=36
 
lim ln x quand -> 0+ = - infi
lim ln x quand -> + infi =+ in
lim ln x/x quand -> +infi = 0
lim x ln x quand -> 0+
lim ln(1+x)/x x quand ->0+ = 1
 

During your visit to our site, NumWorks needs to install "cookies" or use other technologies to collect data about you in order to:

With the exception of Cookies essential to the operation of the site, NumWorks leaves you the choice: you can accept Cookies for audience measurement by clicking on the "Accept and continue" button, or refuse these Cookies by clicking on the "Continue without accepting" button or by continuing your browsing. You can update your choice at any time by clicking on the link "Manage my cookies" at the bottom of the page. For more information, please consult our cookies policy.